These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 27461380)

  • 1. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.
    Kasuya T; Hori S; Watanabe A; Nakajima M; Gahara Y; Rokushima M; Yanagimoto T; Kugimiya A
    Sci Rep; 2016 Jul; 6():30377. PubMed ID: 27461380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.
    Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP
    Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice.
    Kakiuchi-Kiyota S; Koza-Taylor PH; Mantena SR; Nelms LF; Enayetallah AE; Hollingshead BD; Burdick AD; Reed LA; Warneke JA; Whiteley LO; Ryan AM; Mathialagan N
    Toxicol Sci; 2014 Mar; 138(1):234-48. PubMed ID: 24336348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides.
    Hori SI; Mitsuoka Y; Kugimiya A
    Nucleic Acid Ther; 2019 Feb; 29(1):44-50. PubMed ID: 30508397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Computationally Evaluated Target Specificity in the Hepatotoxicity of Gapmer Antisense Oligonucleotides.
    Kasuya T; Kugimiya A
    Nucleic Acid Ther; 2018 Oct; 28(5):312-317. PubMed ID: 30095329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiviral Efficacy of RNase H-Dependent Gapmer Antisense Oligonucleotides against Japanese Encephalitis Virus.
    Okamoto S; Echigoya Y; Tago A; Segawa T; Sato Y; Itou T
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filling the gap in LNA antisense oligo gapmers: the effects of unlocked nucleic acid (UNA) and 4'-C-hydroxymethyl-DNA modifications on RNase H recruitment and efficacy of an LNA gapmer.
    Fluiter K; Mook OR; Vreijling J; Langkjaer N; Højland T; Wengel J; Baas F
    Mol Biosyst; 2009 Aug; 5(8):838-43. PubMed ID: 19603119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Method for Profiling Protein Interactions with LNA-Modified Antisense Oligonucleotides Using Protein Microarrays.
    Kakiuchi-Kiyota S; Whiteley LO; Ryan AM; Mathialagan N
    Nucleic Acid Ther; 2016 Apr; 26(2):93-101. PubMed ID: 26643897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LNA-antisense rivals siRNA for gene silencing.
    Jepsen JS; Wengel J
    Curr Opin Drug Discov Devel; 2004 Mar; 7(2):188-94. PubMed ID: 15603252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine-tuning of ENA gapmers as antisense oligonucleotides for sequence-specific inhibition.
    Takagi-Sato M; Tokuhiro S; Kawaida R; Koizumi M
    Oligonucleotides; 2007; 17(3):291-301. PubMed ID: 17854269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Gene Expression Knock-Down by Chemically and Structurally Modified Gapmer Antisense Oligonucleotides.
    Lisowiec-Wąchnicka J; Danielsen MB; Nader EA; Jørgensen PT; Wengel J; Pasternak A
    Chembiochem; 2022 Aug; 23(15):e202200168. PubMed ID: 35675170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA.
    Grünweller A; Wyszko E; Bieber B; Jahnel R; Erdmann VA; Kurreck J
    Nucleic Acids Res; 2003 Jun; 31(12):3185-93. PubMed ID: 12799446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins.
    Shen W; De Hoyos CL; Sun H; Vickers TA; Liang XH; Crooke ST
    Nucleic Acids Res; 2018 Mar; 46(5):2204-2217. PubMed ID: 29390093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of nucleobase chemical modifications that reduce the hepatotoxicity of gapmer antisense oligonucleotides.
    Yoshida T; Morihiro K; Naito Y; Mikami A; Kasahara Y; Inoue T; Obika S
    Nucleic Acids Res; 2022 Jul; 50(13):7224-7234. PubMed ID: 35801870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gapmer Antisense Oligonucleotides Containing 2',3'-Dideoxy-2'-fluoro-3'-C-hydroxymethyl-β-d-lyxofuranosyl Nucleotides Display Site-Specific RNase H Cleavage and Induce Gene Silencing.
    Danielsen MB; Lou C; Lisowiec-Wachnicka J; Pasternak A; Jørgensen PT; Wengel J
    Chemistry; 2020 Jan; 26(6):1368-1379. PubMed ID: 31682037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice.
    Hagedorn PH; Pontoppidan M; Bisgaard TS; Berrera M; Dieckmann A; Ebeling M; Møller MR; Hudlebusch H; Jensen ML; Hansen HF; Koch T; Lindow M
    Nucleic Acids Res; 2018 Jun; 46(11):5366-5380. PubMed ID: 29790953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index.
    Shen W; De Hoyos CL; Migawa MT; Vickers TA; Sun H; Low A; Bell TA; Rahdar M; Mukhopadhyay S; Hart CE; Bell M; Riney S; Murray SF; Greenlee S; Crooke RM; Liang XH; Seth PP; Crooke ST
    Nat Biotechnol; 2019 Jun; 37(6):640-650. PubMed ID: 31036929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification study of antisense gapmers.
    Stanton R; Sciabola S; Salatto C; Weng Y; Moshinsky D; Little J; Walters E; Kreeger J; DiMattia D; Chen T; Clark T; Liu M; Qian J; Roy M; Dullea R
    Nucleic Acid Ther; 2012 Oct; 22(5):344-59. PubMed ID: 22852836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence motifs associated with hepatotoxicity of locked nucleic acid--modified antisense oligonucleotides.
    Burdick AD; Sciabola S; Mantena SR; Hollingshead BD; Stanton R; Warneke JA; Zeng M; Martsen E; Medvedev A; Makarov SS; Reed LA; Davis JW; Whiteley LO
    Nucleic Acids Res; 2014 Apr; 42(8):4882-91. PubMed ID: 24550163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Investigation into the Potential of Targeting
    Goddard LR; Mardle CE; Gneid H; Ball CG; Gowers DM; Atkins HS; Butt LE; Watts JK; Vincent HA; Callaghan AJ
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.