These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. A Sensitive In Vitro Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides. Dieckmann A; Hagedorn PH; Burki Y; Brügmann C; Berrera M; Ebeling M; Singer T; Schuler F Mol Ther Nucleic Acids; 2018 Mar; 10():45-54. PubMed ID: 29499955 [TBL] [Abstract][Full Text] [Related]
27. On the in vitro and in vivo properties of four locked nucleic acid nucleotides incorporated into an anti-H-Ras antisense oligonucleotide. Fluiter K; Frieden M; Vreijling J; Rosenbohm C; De Wissel MB; Christensen SM; Koch T; Ørum H; Baas F Chembiochem; 2005 Jun; 6(6):1104-9. PubMed ID: 15861430 [TBL] [Abstract][Full Text] [Related]
28. Palmitoylated phosphodiester gapmer designs with albumin binding capacity and maintained in vitro gene silencing activity. Cai Y; Makarova AM; Wengel J; Howard KA J Gene Med; 2018 Jul; 20(7-8):e3025. PubMed ID: 29800498 [TBL] [Abstract][Full Text] [Related]
29. Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Migawa MT; Shen W; Wan WB; Vasquez G; Oestergaard ME; Low A; De Hoyos CL; Gupta R; Murray S; Tanowitz M; Bell M; Nichols JG; Gaus H; Liang XH; Swayze EE; Crooke ST; Seth PP Nucleic Acids Res; 2019 Jun; 47(11):5465-5479. PubMed ID: 31034558 [TBL] [Abstract][Full Text] [Related]
30. In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Kamola PJ; Kitson JD; Turner G; Maratou K; Eriksson S; Panjwani A; Warnock LC; Douillard Guilloux GA; Moores K; Koppe EL; Wixted WE; Wilson PA; Gooderham NJ; Gant TW; Clark KL; Hughes SA; Edbrooke MR; Parry JD Nucleic Acids Res; 2015 Oct; 43(18):8638-50. PubMed ID: 26338776 [TBL] [Abstract][Full Text] [Related]
31. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis. Cai Y; López-Ruiz E; Wengel J; Creemers LB; Howard KA J Control Release; 2017 May; 253():153-159. PubMed ID: 28274742 [TBL] [Abstract][Full Text] [Related]
32. Degradation of Toxic RNA in Myotonic Dystrophy Using Gapmer Antisense Oligonucleotides. Nguyen Q; Yokota T Methods Mol Biol; 2020; 2176():99-109. PubMed ID: 32865785 [TBL] [Abstract][Full Text] [Related]
33. Expanding the design horizon of antisense oligonucleotides with alpha-L-LNA. Frieden M; Christensen SM; Mikkelsen ND; Rosenbohm C; Thrue CA; Westergaard M; Hansen HF; Ørum H; Koch T Nucleic Acids Res; 2003 Nov; 31(21):6365-72. PubMed ID: 14576324 [TBL] [Abstract][Full Text] [Related]
34. Antisense Oligonucleotide in LNA-Gapmer Design Targeting TGFBR2-A Key Single Gene Target for Safe and Effective Inhibition of TGFβ Signaling. Kuespert S; Heydn R; Peters S; Wirkert E; Meyer AL; Siebörger M; Johannesen S; Aigner L; Bogdahn U; Bruun TH Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32178467 [TBL] [Abstract][Full Text] [Related]
35. Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms. Pollak AJ; Hickman JH; Liang XH; Crooke ST Nucleic Acid Ther; 2020 Oct; 30(5):312-324. PubMed ID: 32589504 [TBL] [Abstract][Full Text] [Related]
36. 2'-O-[2-[(N,N-dimethylamino)oxy]ethyl]-modified oligonucleotides inhibit expression of mRNA in vitro and in vivo. Prakash TP; Johnston JF; Graham MJ; Condon TP; Manoharan M Nucleic Acids Res; 2004; 32(2):828-33. PubMed ID: 14762210 [TBL] [Abstract][Full Text] [Related]
37. Chemical Diversity of Locked Nucleic Acid-Modified Antisense Oligonucleotides Allows Optimization of Pharmaceutical Properties. Papargyri N; Pontoppidan M; Andersen MR; Koch T; Hagedorn PH Mol Ther Nucleic Acids; 2020 Mar; 19():706-717. PubMed ID: 31951854 [TBL] [Abstract][Full Text] [Related]
38. Mind the Gapmer: Implications of Co-transcriptional Cleavage by Antisense Oligonucleotides. Maranon DG; Wilusz J Mol Cell; 2020 Mar; 77(5):932-933. PubMed ID: 32142690 [TBL] [Abstract][Full Text] [Related]
39. Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Jepsen JS; Sørensen MD; Wengel J Oligonucleotides; 2004; 14(2):130-46. PubMed ID: 15294076 [TBL] [Abstract][Full Text] [Related]
40. Liver as a target for oligonucleotide therapeutics. Sehgal A; Vaishnaw A; Fitzgerald K J Hepatol; 2013 Dec; 59(6):1354-9. PubMed ID: 23770039 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]