These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27462319)

  • 1. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis.
    Turner MF; Heuberger AL; Kirkwood JS; Collins CC; Wolfrum EJ; Broeckling CD; Prenni JE; Jahn CE
    Front Plant Sci; 2016; 7():953. PubMed ID: 27462319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor.
    Mantilla Perez MB; Zhao J; Yin Y; Hu J; Salas Fernandez MG
    Theor Appl Genet; 2014 Dec; 127(12):2645-62. PubMed ID: 25326721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Targeted Metabolomics Reveals Sorghum Rhizosphere-Associated Exudates are Influenced by the Belowground Interaction of Substrate and Sorghum Genotype.
    Miller SB; Heuberger AL; Broeckling CD; Jahn CE
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in morpho-physiological and metabolic responses to low nitrogen stress across the sorghum association panel.
    Grzybowski MW; Zwiener M; Jin H; Wijewardane NK; Atefi A; Naldrett MJ; Alvarez S; Ge Y; Schnable JC
    BMC Plant Biol; 2022 Sep; 22(1):433. PubMed ID: 36076172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor).
    Zheng LY; Guo XS; He B; Sun LJ; Peng Y; Dong SS; Liu TF; Jiang S; Ramachandran S; Liu CM; Jing HC
    Genome Biol; 2011 Nov; 12(11):R114. PubMed ID: 22104744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production.
    da Silva MJ; Pastina MM; de Souza VF; Schaffert RE; Carneiro PCS; Noda RW; Carneiro JES; Damasceno CMB; Parrella RADC
    PLoS One; 2017; 12(8):e0183504. PubMed ID: 28817696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomic Study of Sorghum (
    Mandrone M; Chiocchio I; Barbanti L; Tomasi P; Tacchini M; Poli F
    J Agric Food Chem; 2021 Jan; 69(3):1132-1145. PubMed ID: 33459558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth Properties and Biomass Production in the Hybrid C4 Crop Sorghum bicolor.
    Tazoe Y; Sazuka T; Yamaguchi M; Saito C; Ikeuchi M; Kanno K; Kojima S; Hirano K; Kitano H; Kasuga S; Endo T; Fukuda H; Makino A
    Plant Cell Physiol; 2016 May; 57(5):944-52. PubMed ID: 26508521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide Association Study for Biomass Related Traits in a Panel of
    Habyarimana E; De Franceschi P; Ercisli S; Baloch FS; Dall'Agata M
    Front Plant Sci; 2020; 11():551305. PubMed ID: 33281836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour).
    Mocoeur A; Zhang YM; Liu ZQ; Shen X; Zhang LM; Rasmussen SK; Jing HC
    Theor Appl Genet; 2015 Sep; 128(9):1685-701. PubMed ID: 25982132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root-associated bacterial communities and root metabolite composition are linked to nitrogen use efficiency in sorghum.
    Chai YN; Qi Y; Goren E; Chiniquy D; Sheflin AM; Tringe SG; Prenni JE; Liu P; Schachtman DP
    mSystems; 2024 Jan; 9(1):e0119023. PubMed ID: 38132569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of Sorghum Stem Biomass Accumulation in Response to Water Deficit: A Multiscale Analysis from Internode Tissue to Plant Level.
    Perrier L; Rouan L; Jaffuel S; Clément-Vidal A; Roques S; Soutiras A; Baptiste C; Bastianelli D; Fabre D; Dubois C; Pot D; Luquet D
    Front Plant Sci; 2017; 8():1516. PubMed ID: 28919904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association mapping of total antioxidant capacity, phenols, tannins, and flavonoids in a panel of Sorghum bicolor and S. bicolor × S. halepense populations using multi-locus models.
    Habyarimana E; Dall'Agata M; De Franceschi P; Baloch FS
    PLoS One; 2019; 14(12):e0225979. PubMed ID: 31805171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ting (a Southern African food) with different tannin content, as revealed by gas chromatography mass spectrometry (GC-MS)-based metabolomics.
    Adebo OA; Kayitesi E; Tugizimana F; Njobeh PB
    Food Res Int; 2019 Jul; 121():326-335. PubMed ID: 31108755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deleterious Mutation Burden and Its Association with Complex Traits in Sorghum (
    Valluru R; Gazave EE; Fernandes SB; Ferguson JN; Lozano R; Hirannaiah P; Zuo T; Brown PJ; Leakey ADB; Gore MA; Buckler ES; Bandillo N
    Genetics; 2019 Mar; 211(3):1075-1087. PubMed ID: 30622134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.
    Brenton ZW; Cooper EA; Myers MT; Boyles RE; Shakoor N; Zielinski KJ; Rauh BL; Bridges WC; Morris GP; Kresovich S
    Genetics; 2016 Sep; 204(1):21-33. PubMed ID: 27356613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic characterization of a Sorghum bicolor multiparent mapping population emphasizing carbon-partitioning dynamics.
    Boatwright JL; Brenton ZW; Boyles RE; Sapkota S; Myers MT; Jordan KE; Dale SM; Shakoor N; Cooper EA; Morris GP; Kresovich S
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33681979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal genome-wide association study reveals early QTL that predict biomass accumulation under cold stress in sorghum.
    Agnew E; Ziegler G; Lee S; Lizárraga C; Fahlgren N; Baxter I; Mockler TC; Shakoor N
    Front Plant Sci; 2024; 15():1278802. PubMed ID: 38807776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BIOMASS YIELD 1 regulates sorghum biomass and grain yield via the shikimate pathway.
    Chen J; Zhu M; Liu R; Zhang M; Lv Y; Liu Y; Xiao X; Yuan J; Cai H
    J Exp Bot; 2020 Sep; 71(18):5506-5520. PubMed ID: 32497182
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.