These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 27462503)
1. Mathematical analysis of a nutrient-plankton system with delay. Rehim M; Zhang Z; Muhammadhaji A Springerplus; 2016; 5(1):1055. PubMed ID: 27462503 [TBL] [Abstract][Full Text] [Related]
2. Stability analysis and Hopf bifurcation of a fractional order mathematical model with time delay for nutrient-phytoplankton-zooplankton. Shi RQ; Ren JN; Wang CH Math Biosci Eng; 2020 May; 17(4):3836-3868. PubMed ID: 32987557 [TBL] [Abstract][Full Text] [Related]
3. Stability switches and chaos induced by delay in a reaction-diffusion nutrient-plankton model. Guo Q; Wang L; Liu H; Wang Y; Li J; Kumar Tiwari P; Zhao M; Dai C J Biol Dyn; 2023 Dec; 17(1):2272852. PubMed ID: 37962904 [TBL] [Abstract][Full Text] [Related]
4. Role of toxin and nutrient for the occurrence and termination of plankton bloom--results drawn from field observations and a mathematical model. Pal S; Chatterjee S; Chattopadhyay J Biosystems; 2007; 90(1):87-100. PubMed ID: 17194523 [TBL] [Abstract][Full Text] [Related]
5. Minimal Model of Plankton Systems Revisited with Spatial Diffusion and Maturation Delay. Zhao J; Tian JP; Wei J Bull Math Biol; 2016 Mar; 78(3):381-412. PubMed ID: 26934887 [TBL] [Abstract][Full Text] [Related]
6. Oscillations in plankton models with nutrient recycling. Ruan S J Theor Biol; 2001 Jan; 208(1):15-26. PubMed ID: 11162049 [TBL] [Abstract][Full Text] [Related]
7. Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Jiang ZC; Bi XH; Zhang TQ; Pradeep BGSA Math Biosci Eng; 2019 Apr; 16(5):3807-3829. PubMed ID: 31499637 [TBL] [Abstract][Full Text] [Related]
8. Toxicity-mediated regime shifts in a contaminated nutrient-plankton system. Mandal A; Biswas S; Pal S Chaos; 2023 Feb; 33(2):023106. PubMed ID: 36859222 [TBL] [Abstract][Full Text] [Related]
9. Bifurcation and pattern dynamics in the nutrient-plankton network. Yang W; Zheng Q; Shen J; Guan L Math Biosci Eng; 2023 Nov; 20(12):21337-21358. PubMed ID: 38124600 [TBL] [Abstract][Full Text] [Related]
10. A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms. Mukhopadhyay B; Bhattacharyya R J Biol Phys; 2005 Jan; 31(1):3-22. PubMed ID: 23345881 [TBL] [Abstract][Full Text] [Related]
11. Stability switches, periodic oscillations and global stability in an infectious disease model with multiple time delays. Kumar A; Takeuchi Y; Srivastava PK Math Biosci Eng; 2023 Apr; 20(6):11000-11032. PubMed ID: 37322969 [TBL] [Abstract][Full Text] [Related]
12. Global dynamics of a diffusive phytoplankton-zooplankton model with toxic substances effect and delay. Yang H Math Biosci Eng; 2022 Apr; 19(7):6712-6730. PubMed ID: 35730279 [TBL] [Abstract][Full Text] [Related]
13. Chaos control in a multiple delayed phytoplankton-zooplankton model with group defense and predator's interference. Sajan ; Dubey B Chaos; 2021 Aug; 31(8):083101. PubMed ID: 34470255 [TBL] [Abstract][Full Text] [Related]
14. Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays. Song ZG; Xu J Cogn Neurodyn; 2013 Dec; 7(6):505-21. PubMed ID: 24427223 [TBL] [Abstract][Full Text] [Related]
15. Dynamical Study of an Eco-Epidemiological Delay Model for Plankton System with Toxicity. Thakur NK; Srivastava SC; Ojha A Iran J Sci Technol Trans A Sci; 2021; 45(1):283-304. PubMed ID: 33424195 [TBL] [Abstract][Full Text] [Related]
16. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Shen Z; Wei J Math Biosci Eng; 2018 Jun; 15(3):693-715. PubMed ID: 30380326 [TBL] [Abstract][Full Text] [Related]
17. Andronov-Hopf and Neimark-Sacker bifurcations in time-delay differential equations and difference equations with applications to models for diseases and animal populations. Darlai R; Moore EJ; Koonprasert S Adv Differ Equ; 2020; 2020(1):190. PubMed ID: 32435267 [TBL] [Abstract][Full Text] [Related]
18. Plankton-toxin interaction with a variable input nutrient. Jang SR; Baglama J; Rick J J Biol Dyn; 2008 Jan; 2(1):14-30. PubMed ID: 22876842 [TBL] [Abstract][Full Text] [Related]
19. Oscillations in a tumor-immune system interaction model with immune response delay. Huo Z; Huang J; Kuang Y; Ruan S; Zhang Y Math Med Biol; 2024 Sep; ():. PubMed ID: 39287223 [TBL] [Abstract][Full Text] [Related]
20. Stability and Hopf bifurcation for a five-dimensional virus infection model with Beddington-DeAngelis incidence and three delays. Miao H; Teng Z; Abdurahman X J Biol Dyn; 2018 Dec; 12(1):146-170. PubMed ID: 29198164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]