These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27462761)

  • 1. Structure-Based Approaches to Target Fishing and Ligand Profiling.
    Rognan D
    Mol Inform; 2010 Mar; 29(3):176-87. PubMed ID: 27462761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in the analysis of multiple activity profile of screening data using computational approaches.
    Kuyoc-Carrillo VF; Medina-Franco JL
    Drug Dev Res; 2014 Aug; 75(5):313-23. PubMed ID: 25160071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.
    Meslamani J; Li J; Sutter J; Stevens A; Bertrand HO; Rognan D
    J Chem Inf Model; 2012 Apr; 52(4):943-55. PubMed ID: 22480372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel.
    Meslamani J; Rognan D
    J Chem Inf Model; 2011 Jul; 51(7):1593-603. PubMed ID: 21644501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational methodologies for compound database searching that utilize experimental protein-ligand interaction information.
    Tan L; Batista J; Bajorath J
    Chem Biol Drug Des; 2010 Sep; 76(3):191-200. PubMed ID: 20636330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on chemogenomics approach: interpreting antagonist activity of secreted frizzled-related protein 1 in glaucoma disease with in-silico docking.
    Dave K; Panchal H
    Curr Top Med Chem; 2012; 12(16):1834-42. PubMed ID: 23030617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemogenomic approaches to rational drug design.
    Rognan D
    Br J Pharmacol; 2007 Sep; 152(1):38-52. PubMed ID: 17533416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying multiple-target ligands via computational chemogenomics approaches.
    Peng S; Lin X; Guo Z; Huang N
    Curr Top Med Chem; 2012; 12(12):1363-75. PubMed ID: 22690683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemogenomics in drug discovery: computational methods based on the comparison of binding sites.
    Vulpetti A; Kalliokoski T; Milletti F
    Future Med Chem; 2012 Oct; 4(15):1971-9. PubMed ID: 23088277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining label-free cell phenotypic profiling with computational approaches for novel drug discovery.
    Fang Y
    Expert Opin Drug Discov; 2015 Apr; 10(4):331-43. PubMed ID: 25727255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands.
    Weill N; Rognan D
    J Chem Inf Model; 2009 Apr; 49(4):1049-62. PubMed ID: 19301874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.
    Ghattas MA; Atatreh N; Bichenkova EV; Bryce RA
    J Mol Graph Model; 2014 Jul; 52():114-23. PubMed ID: 25038507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational profiling of bioactive compounds using a target-dependent composite workflow.
    Meslamani J; Bhajun R; Martz F; Rognan D
    J Chem Inf Model; 2013 Sep; 53(9):2322-33. PubMed ID: 23941602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approaches in chemogenomics and chemical biology: current and future impact on drug discovery.
    Bajorath J
    Expert Opin Drug Discov; 2008 Dec; 3(12):1371-6. PubMed ID: 23506102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions.
    Deng Z; Chuaqui C; Singh J
    J Med Chem; 2004 Jan; 47(2):337-44. PubMed ID: 14711306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of ligand- and structure-based virtual screening on the DUD data set.
    von Korff M; Freyss J; Sander T
    J Chem Inf Model; 2009 Feb; 49(2):209-31. PubMed ID: 19434824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.