These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2746312)
1. Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels. Korenberg MJ; Sakai HM; Naka K J Neurophysiol; 1989 Jun; 61(6):1110-20. PubMed ID: 2746312 [TBL] [Abstract][Full Text] [Related]
2. Dissection of the neuron network in the catfish inner retina. I. Transmission to ganglion cells. Sakai HM; Naka K J Neurophysiol; 1988 Nov; 60(5):1549-67. PubMed ID: 2848933 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of the ganglion cell response in the catfish and frog retinas. Sakuranaga M; Ando Y; Naka K J Gen Physiol; 1987 Aug; 90(2):229-59. PubMed ID: 3498795 [TBL] [Abstract][Full Text] [Related]
4. Processing of color- and noncolor-coded signals in the gourami retina. III. Ganglion cells. Sakai HM; Machuca H; Korenberg MJ; Naka KI J Neurophysiol; 1997 Oct; 78(4):2034-47. PubMed ID: 9325371 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824 [TBL] [Abstract][Full Text] [Related]
6. Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells. Sakai HM; Naka K J Neurophysiol; 1988 Nov; 60(5):1568-83. PubMed ID: 2848934 [TBL] [Abstract][Full Text] [Related]
7. Dissection of the neuron network in the catfish inner retina. IV. Bidirectional interactions between amacrine and ganglion cells. Sakai HM; Naka KI J Neurophysiol; 1990 Jan; 63(1):105-19. PubMed ID: 2153768 [TBL] [Abstract][Full Text] [Related]
8. Generation and transformation of second-order nonlinearity in catfish retina. Naka K; Sakai HM; Ishii N Ann Biomed Eng; 1988; 16(1):53-64. PubMed ID: 3408051 [TBL] [Abstract][Full Text] [Related]
9. Signal transmission in the catfish retina. V. Sensitivity and circuit. Sakai HM; Naka K J Neurophysiol; 1987 Dec; 58(6):1329-50. PubMed ID: 2830371 [TBL] [Abstract][Full Text] [Related]
10. Response dynamics and receptive-field organization of catfish ganglion cells. Sakai HM; Naka K J Gen Physiol; 1995 Jun; 105(6):795-814. PubMed ID: 7561744 [TBL] [Abstract][Full Text] [Related]
11. Signal transmission in the catfish retina. IV. Transmission to ganglion cells. Sakai HM; Naka K J Neurophysiol; 1987 Dec; 58(6):1307-28. PubMed ID: 2830370 [TBL] [Abstract][Full Text] [Related]
12. A nonlinear cascade model for action potential encoding in an insect sensory neuron. French AS; Korenberg MJ Biophys J; 1989 Apr; 55(4):655-61. PubMed ID: 2720064 [TBL] [Abstract][Full Text] [Related]
13. Complexity and frequency hierarchies in the catfish retina. Korenberg MJ; Sakai HM; Naka KI Front Med Biol Eng; 1997; 8(2):87-107. PubMed ID: 9257131 [TBL] [Abstract][Full Text] [Related]
14. The messages in optic nerve fibers and their interpretation. Naka K; Sakai HM Brain Res Brain Res Rev; 1991; 16(2):135-49. PubMed ID: 1760654 [TBL] [Abstract][Full Text] [Related]
15. A method for constructing data-based models of spiking neurons using a dynamic linear-static nonlinear cascade. Paulin MG Biol Cybern; 1993; 69(1):67-76. PubMed ID: 8334191 [TBL] [Abstract][Full Text] [Related]
16. Signal transmission in the catfish retina. III. Transmission to type-C cell. Sakuranaga M; Naka K J Neurophysiol; 1985 Feb; 53(2):411-28. PubMed ID: 2984349 [TBL] [Abstract][Full Text] [Related]
17. Contrast gain control in the lower vertebrate retinas. Sakai HM; Wang JL; Naka K J Gen Physiol; 1995 Jun; 105(6):815-35. PubMed ID: 7561745 [TBL] [Abstract][Full Text] [Related]
18. Response dynamics and receptive-field organization of catfish amacrine cells. Sakai HM; Naka K J Neurophysiol; 1992 Feb; 67(2):430-42. PubMed ID: 1569468 [TBL] [Abstract][Full Text] [Related]
19. Studies with spike initiators: linearization by noise allows continuous signal modulation in neural networks. Yu XL; Lewis ER IEEE Trans Biomed Eng; 1989 Jan; 36(1):36-43. PubMed ID: 2784125 [TBL] [Abstract][Full Text] [Related]
20. Dissection of a nonlinear cascade model for sensory encoding. French AS; Korenberg MJ Ann Biomed Eng; 1991; 19(4):473-84. PubMed ID: 1741527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]