BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 2746329)

  • 1. Spinal cord segments containing key elements of the central pattern generators for three forms of scratch reflex in the turtle.
    Mortin LI; Stein PS
    J Neurosci; 1989 Jul; 9(7):2285-96. PubMed ID: 2746329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cutaneous dermatomes for initiation of three forms of the scratch reflex in the spinal turtle.
    Mortin LI; Stein PS
    J Comp Neurol; 1990 May; 295(4):515-29. PubMed ID: 2358518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal interactions in the turtle hindlimb enlargement contribute to scratch rhythmogenesis.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1999 Jun; 81(6):2977-87. PubMed ID: 10368414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN; Lee S
    J Neurophysiol; 1996 Jul; 76(1):81-92. PubMed ID: 8836211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of flexor/extensor alternation during fictive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection.
    Stein PS; McCullough ML; Currie SN
    J Neurosci; 1998 Jan; 18(1):467-79. PubMed ID: 9412523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations.
    Currie SN
    J Physiol Paris; 1999; 93(3):199-211. PubMed ID: 10399675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface.
    Berkowitz A; Stein PS
    J Neurosci; 1994 Aug; 14(8):5089-104. PubMed ID: 8046470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate antagonists applied to midbody spinal cord segments reduce the excitability of the fictive rostral scratch reflex in the turtle.
    Currie SN; Stein PS
    Brain Res; 1992 May; 581(1):91-100. PubMed ID: 1354009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Right-left interactions between rostral scratch networks generate rhythmicity in the preenlargement spinal cord of the turtle.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1997 Dec; 78(6):3479-83. PubMed ID: 9405565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three forms of the scratch reflex in the spinal turtle: movement analyses.
    Mortin LI; Keifer J; Stein PS
    J Neurophysiol; 1985 Jun; 53(6):1501-16. PubMed ID: 4009230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns.
    Robertson GA; Mortin LI; Keifer J; Stein PS
    J Neurophysiol; 1985 Jun; 53(6):1517-34. PubMed ID: 4009231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical activation of the pocket scratch central pattern generator in the turtle.
    Currie SN; Stein PS
    J Neurophysiol; 1988 Dec; 60(6):2122-37. PubMed ID: 3236064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blends of rostral and caudal scratch reflex motor patterns elicited by simultaneous stimulation of two sites in the spinal turtle.
    Stein PS; Camp AW; Robertson GA; Mortin LI
    J Neurosci; 1986 Aug; 6(8):2259-66. PubMed ID: 3746408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors.
    Stein PSG
    J Neurophysiol; 2018 Feb; 119(2):422-440. PubMed ID: 29070633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cutaneous stimulation evokes long-lasting excitation of spinal interneurons in the turtle.
    Currie SN; Stein PS
    J Neurophysiol; 1990 Oct; 64(4):1134-48. PubMed ID: 2258738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadly tuned spinal neurons for each form of fictive scratching in spinal turtles.
    Berkowitz A
    J Neurophysiol; 2001 Aug; 86(2):1017-25. PubMed ID: 11495969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rostral spinal cord segments are sufficient to generate a rhythm for both locomotion and scratching but affect their hip extensor phases differently.
    Hao ZZ; Meier ML; Berkowitz A
    J Neurophysiol; 2014 Jul; 112(1):147-55. PubMed ID: 24717347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord coordination of hindlimb movements in the turtle: intralimb temporal relationships during scratching and swimming.
    Field EC; Stein PS
    J Neurophysiol; 1997 Sep; 78(3):1394-403. PubMed ID: 9310430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-methyl-D-aspartate antagonist applied to the spinal cord hindlimb enlargement reduces the amplitude of flexion reflex in the turtle.
    Stein PS; Schild CP
    Brain Res; 1989 Feb; 479(2):379-83. PubMed ID: 2564306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.