These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27463457)

  • 1. QSPR Analysis of Copolymers by Recursive Neural Networks: Prediction of the Glass Transition Temperature of (Meth)acrylic Random Copolymers.
    Bertinetto CG; Duce C; Micheli A; Solaro R; Tiné MR
    Mol Inform; 2010 Sep; 29(8-9):635-43. PubMed ID: 27463457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks.
    Bertinetto C; Duce C; Micheli A; Solaro R; Starita A; Tiné MR
    J Mol Graph Model; 2009 Apr; 27(7):797-802. PubMed ID: 19150251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting physical-chemical properties of compounds from molecular structures by recursive neural networks.
    Bernazzani L; Duce C; Micheli A; Mollica V; Sperduti A; Starita A; Tiné MR
    J Chem Inf Model; 2006; 46(5):2030-42. PubMed ID: 16995734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning with Enormous "Synthetic" Data Sets: Predicting Glass Transition Temperature of Polyimides Using Graph Convolutional Neural Networks.
    Volgin IV; Batyr PA; Matseevich AV; Dobrovskiy AY; Andreeva MV; Nazarychev VM; Larin SV; Goikhman MY; Vizilter YV; Askadskii AA; Lyulin SV
    ACS Omega; 2022 Dec; 7(48):43678-43691. PubMed ID: 36506114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Neural Network Modeling of Glass Transition Temperatures for Some Homopolymers with Saturated Carbon Chain Backbone.
    Epure EL; Oniciuc SD; Hurduc N; Drăgoi EN
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Glass Transition Temperatures for Polymeric Coating Materials: Application of QSPR Mixture-based Approach.
    Petrosyan LS; Sizochenko N; Leszczynski J; Rasulev B
    Mol Inform; 2019 Aug; 38(8-9):e1800150. PubMed ID: 30945811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wuantitative structure-property relationship study of the glass transition temperature of OLED materials.
    Yin S; Shuai Z; Wang Y
    J Chem Inf Comput Sci; 2003; 43(3):970-7. PubMed ID: 12767156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective descriptor pruning for QSAR/QSPR studies using artificial neural networks.
    Turner JV; Cutler DJ; Spence I; Maddalena DJ
    J Comput Chem; 2003 May; 24(7):891-7. PubMed ID: 12692798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the formulation dependence of the glass transition temperatures of amine-epoxy copolymers using a QSPR based on the AM1 method.
    Morrill JA; Jensen RE; Madison PH; Chabalowski CF
    J Chem Inf Comput Sci; 2004; 44(3):912-20. PubMed ID: 15154757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSPR modelling for prediction of glass transition temperature of diverse polymers.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2018 Dec; 29(12):935-956. PubMed ID: 30392386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between the glass transition temperatures and repeating unit structure for high molecular weight polymers.
    Cao C; Lin Y
    J Chem Inf Comput Sci; 2003; 43(2):643-50. PubMed ID: 12653533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ring Repeating Unit: An Upgraded Structure Representation of Linear Condensation Polymers for Property Prediction.
    Yu M; Shi Y; Jia Q; Wang Q; Luo ZH; Yan F; Zhou YN
    J Chem Inf Model; 2023 Feb; 63(4):1177-1187. PubMed ID: 36651860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures.
    Palomba D; Vazquez GE; Díaz MF
    J Mol Graph Model; 2012 Sep; 38():137-47. PubMed ID: 23085161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of glass transition temperatures from monomer and repeat unit structure using computational neural networks.
    Mattioni BE; Jurs PC
    J Chem Inf Comput Sci; 2002; 42(2):232-40. PubMed ID: 11911692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ellipsometry measurements of glass transition breadth in bulk films of random, block, and gradient copolymers.
    Mok MM; Kim J; Marrou SR; Torkelson JM
    Eur Phys J E Soft Matter; 2010 Mar; 31(3):239-52. PubMed ID: 20217174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors.
    Xu J; Zhu L; Fang D; Wang L; Xiao S; Liu L; Xu W
    J Mol Graph Model; 2012 Jun; 36():10-9. PubMed ID: 22503858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing novel polymers with targeted properties using the signature molecular descriptor.
    Brown WM; Martin S; Rintoul MD; Faulon JL
    J Chem Inf Model; 2006; 46(2):826-35. PubMed ID: 16563014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep Neural Network for Accurate and Robust Prediction of the Glass Transition Temperature of Polyhydroxyalkanoate Homo- and Copolymers.
    Jiang Z; Hu J; Marrone BL; Pilania G; Yu XB
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general QSPR model for the prediction of theta (lower critical solution temperature) in polymer solutions with topological indices.
    Xu J; Liu L; Xu W; Zhao S; Zuo D
    J Mol Graph Model; 2007 Jul; 26(1):352-9. PubMed ID: 17296321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.