These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 27463524)

  • 21. Developmental changes in the electrophysiological properties of brain stem trigeminal neurons during pattern (barrelette) formation.
    Guido W; Günhan-Agar E; Erzurumlu RS
    J Neurophysiol; 1998 Mar; 79(3):1295-306. PubMed ID: 9497411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal frequency of whisker movement. I. Representations in brain stem and thalamus.
    Sosnik R; Haidarliu S; Ahissar E
    J Neurophysiol; 2001 Jul; 86(1):339-53. PubMed ID: 11431515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemoanatomical separation of vibrissal trigeminal primary afferents in the rat: a special central representation of supraorbital vibrissae.
    Páli J; Baldauf ZA; Szentpétery Z; Szabo Z; Herczeg L; Görcs TJ
    Somatosens Mot Res; 2002; 19(3):245-54. PubMed ID: 12396582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensorimotor integration in the whisker somatosensory brain stem trigeminal loop.
    Tsur O; Khrapunsky Y; Azouz R
    J Neurophysiol; 2019 Nov; 122(5):2061-2075. PubMed ID: 31533013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response properties and topography of vibrissa-sensitive VPM neurons in the rat.
    Ito M
    J Neurophysiol; 1988 Oct; 60(4):1181-97. PubMed ID: 3193152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual projections of tuberomammillary neurons to whisker-related, sensory and motor regions of the rat.
    Hong EY; Beak SK; Lee HS
    Brain Res; 2010 Oct; 1354():64-73. PubMed ID: 20682294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical coupling through the skin affects whisker movements and tactile information encoding.
    Ego-Stengel V; Abbasi A; Larroche M; Lassagne H; Boubenec Y; Shulz DE
    J Neurophysiol; 2019 Oct; 122(4):1606-1622. PubMed ID: 31411931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of neonatal axoplasmic transport attenuation on the response properties of vibrissae-sensitive neurons in the trigeminal principal sensory nucleus of the rat.
    Chiaia NL; Zhang S; Crissman RS; Rhoades RW
    Somatosens Mot Res; 2000; 17(3):273-83. PubMed ID: 10994597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the trigeminal mesencephalic nucleus in rat whisker pad proprioception.
    Mameli O; Stanzani S; Mulliri G; Pellitteri R; Caria MA; Russo A; De Riu P
    Behav Brain Funct; 2010 Nov; 6():69. PubMed ID: 21078134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of trigeminal mesencephalic nucleus in kinetic encoding of whisker movements.
    Mameli O; Stanzani S; Russo A; Pellitteri R; Manca P; De Riu PL; Caria MA
    Brain Res Bull; 2014 Mar; 102():37-45. PubMed ID: 24518654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whisking in air: encoding of kinematics by VPM neurons in awake rats.
    Khatri V; Bermejo R; Brumberg JC; Zeigler HP
    Somatosens Mot Res; 2010; 27(3):111-20. PubMed ID: 20722492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early frequency-dependent information processing and cortical control in the whisker pathway of the rat: electrophysiological study of brainstem nuclei principalis and interpolaris.
    Sanchez-Jimenez A; Panetsos F; Murciano A
    Neuroscience; 2009 Apr; 160(1):212-26. PubMed ID: 19409209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responses of trigeminal ganglion neurons during natural whisking behaviors in the awake rat.
    Leiser SC; Moxon KA
    Neuron; 2007 Jan; 53(1):117-33. PubMed ID: 17196535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial structure of multiwhisker receptive fields in the barrel cortex is stimulus dependent.
    Le Cam J; Estebanez L; Jacob V; Shulz DE
    J Neurophysiol; 2011 Aug; 106(2):986-98. PubMed ID: 21653730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gradient of tactile properties in the rat whisker pad.
    Gugig E; Sharma H; Azouz R
    PLoS Biol; 2020 Oct; 18(10):e3000699. PubMed ID: 33090990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Similarity of direction tuning among responses to stimulation of different whiskers in neurons of rat barrel cortex.
    Kida H; Shimegi S; Sato H
    J Neurophysiol; 2005 Sep; 94(3):2004-18. PubMed ID: 15972836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholinergic modulation of vibrissal receptive fields in trigeminal nuclei.
    Timofeeva E; Dufresne C; Sík A; Zhang ZW; Deschênes M
    J Neurosci; 2005 Oct; 25(40):9135-43. PubMed ID: 16207872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between physiological response type (RA and SA) and vibrissal receptive field of neurons within the rat trigeminal ganglion.
    Leiser SC; Moxon KA
    J Neurophysiol; 2006 May; 95(5):3129-45. PubMed ID: 16421201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Principalis, oralis and interpolaris responses to whisker movements provoked by air jets in rats.
    Moreno A; Garcia-Gonzalez V; Sanchez-Jimenez A; Panetsos F
    Neuroreport; 2005 Sep; 16(14):1569-73. PubMed ID: 16148747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whisker trimming begun at birth or on postnatal day 12 affects excitatory and inhibitory receptive fields of layer IV barrel neurons.
    Shoykhet M; Land PW; Simons DJ
    J Neurophysiol; 2005 Dec; 94(6):3987-95. PubMed ID: 16093330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.