These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27463848)

  • 1. Support Vector Machine (SVM) as Alternative Tool to Assign Acute Aquatic Toxicity Warning Labels to Chemicals.
    Michielan L; Pireddu L; Floris M; Moro S
    Mol Inform; 2010 Jan; 29(1-2):51-64. PubMed ID: 27463848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Structure-Activity Relationships of Aquatic Narcosis: A Review.
    Adhikari C; Mishra BK
    Curr Comput Aided Drug Des; 2018; 14(1):7-28. PubMed ID: 28699497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods.
    Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors.
    Carriger JF; Martin TM; Barron MG
    Aquat Toxicol; 2016 Nov; 180():11-24. PubMed ID: 27640153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.
    Sanderson H; Thomsen M
    Toxicol Lett; 2009 Jun; 187(2):84-93. PubMed ID: 19429249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines.
    Niazi A; Jameh-Bozorghi S; Nori-Shargh D
    J Hazard Mater; 2008 Mar; 151(2-3):603-9. PubMed ID: 17630186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of aquatic toxicity mode of action using linear discriminant and random forest models.
    Martin TM; Grulke CM; Young DM; Russom CL; Wang NY; Jackson CR; Barron MG
    J Chem Inf Model; 2013 Sep; 53(9):2229-39. PubMed ID: 23962299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.
    Reenu ; Vikas
    J Mol Graph Model; 2015 Sep; 61():89-101. PubMed ID: 26188798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOA-based linear and nonlinear QSAR models for predicting the toxicity of organic chemicals to Vibrio fischeri.
    Zhang S; Wang N; Su L; Xu X; Li C; Qin W; Zhao Y
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9114-9125. PubMed ID: 31916172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata.
    Yu X
    Aquat Toxicol; 2020 Jul; 224():105496. PubMed ID: 32408003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of global and mode of action-based models for aquatic toxicity.
    Martin TM; Young DM; Lilavois CR; Barron MG
    SAR QSAR Environ Res; 2015; 26(3):245-62. PubMed ID: 25783870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors.
    Fatemi MH; Heidari A; Gharaghani S
    J Theor Biol; 2015 Mar; 369():13-22. PubMed ID: 25600056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationships and ecological risk assessment: an overview of predictive aquatic toxicology research.
    Bradbury SP
    Toxicol Lett; 1995 Sep; 79(1-3):229-37. PubMed ID: 7570660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of support vector machine (SVM) for prediction toxic activity of different data sets.
    Zhao CY; Zhang HX; Zhang XY; Liu MC; Hu ZD; Fan BT
    Toxicology; 2006 Jan; 217(2-3):105-19. PubMed ID: 16213080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target site model: Predicting mode of action and aquatic organism acute toxicity using Abraham parameters and feature-weighted k-nearest neighbors classification.
    Boone KS; Di Toro DM
    Environ Toxicol Chem; 2019 Feb; 38(2):375-386. PubMed ID: 30506854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico prediction of chemical toxicity on avian species using chemical category approaches.
    Zhang C; Cheng F; Sun L; Zhuang S; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2015 Mar; 122():280-287. PubMed ID: 25532772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.