These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
489 related articles for article (PubMed ID: 27463924)
1. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb. Singh BK; Pandey PC Appl Opt; 2016 Jul; 55(21):5684-92. PubMed ID: 27463924 [TBL] [Abstract][Full Text] [Related]
2. Tunable temperature-dependent THz photonic bandgaps and localization mode engineering in 1D periodic and quasi-periodic structures with graded-index materials and InSb. Singh BK; Pandey PC Appl Opt; 2018 Oct; 57(28):8171-8181. PubMed ID: 30461765 [TBL] [Abstract][Full Text] [Related]
3. Construction of photonic crystals with thermally adjustable pseudo-gaps. Li C; Xue Q; Ji Z; Li Y; Zhang H; Li D Soft Matter; 2020 Mar; 16(12):3063-3068. PubMed ID: 32133472 [TBL] [Abstract][Full Text] [Related]
4. Periodic and quasi-periodic one-dimensional extrinsically magnetized photonic crystals with robust photonic bandgaps. Biswal A Appl Opt; 2023 Oct; 62(30):8197-8203. PubMed ID: 38038118 [TBL] [Abstract][Full Text] [Related]
5. Ultra-large near-infrared omnidirectional photonic bandgaps in cascaded one-dimensional photonic crystals containing all-dielectric metamaterials. Cheng Z; She Y; Panda A; Feng M; Li J; Wu F Appl Opt; 2023 Sep; 62(25):6625-6630. PubMed ID: 37706794 [TBL] [Abstract][Full Text] [Related]
6. Terahertz angle-independent photonic bandgap in a one-dimensional photonic crystal containing InSb-based hyperbolic metamaterials. Wu F; Yu X; Panda A; Liu D Appl Opt; 2022 Sep; 61(26):7677-7684. PubMed ID: 36256368 [TBL] [Abstract][Full Text] [Related]
7. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals. Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712 [TBL] [Abstract][Full Text] [Related]
8. On-Demand Design of Tunable Complete Photonic Band Gaps based on Bloch Mode Analysis. Li S; Lin H; Meng F; Moss D; Huang X; Jia B Sci Rep; 2018 Sep; 8(1):14283. PubMed ID: 30250273 [TBL] [Abstract][Full Text] [Related]
9. Modulation of large absolute photonic bandgaps in two-dimensional plasma photonic crystal containing anisotropic material. Li Q; Xie K; Yuan D; Wei Z; Hu L; Mao Q; Jiang H; Hu Z; Wang E Appl Opt; 2016 Oct; 55(30):8541-8549. PubMed ID: 27828133 [TBL] [Abstract][Full Text] [Related]
10. Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres. Liu S; Lin Z Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066609. PubMed ID: 16906999 [TBL] [Abstract][Full Text] [Related]
11. Tuning band structures of photonic multilayers with positive and negative refractive index materials according to generalized Fibonacci and Thue-Morse sequences. Silva BP; Costa CH J Phys Condens Matter; 2020 Mar; 32(13):135703. PubMed ID: 31801114 [TBL] [Abstract][Full Text] [Related]
12. Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings. David S; Chelnokov A; Lourtioz JM Opt Lett; 2000 Jul; 25(14):1001-3. PubMed ID: 18064253 [TBL] [Abstract][Full Text] [Related]
13. Omnidirectional bandgaps in Fibonacci quasicrystals containing single-negative materials. Deng XH; Liu JT; Huang JH; Zou L; Liu NH J Phys Condens Matter; 2010 Feb; 22(5):055403. PubMed ID: 21386341 [TBL] [Abstract][Full Text] [Related]
14. Microwave Properties of One-dimensional Photonic Structures Based on Composite Layers Filled with Nanocarbon. Vovchenko L; Lozitsky O; Sagalianov I; Matzui L; Launets V Nanoscale Res Lett; 2017 Dec; 12(1):269. PubMed ID: 28410555 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical nanoparticle bragg mirrors: tandem and gradient architectures. Redel E; Huai C; Renner M; von Freymann G; Ozin GA Small; 2011 Dec; 7(24):3465-71. PubMed ID: 22009683 [TBL] [Abstract][Full Text] [Related]
17. Omnidirectional photonic bandgap in one-dimensional photonic crystals containing hyperbolic metamaterials. Lu G; Zhou X; Zhao Y; Zhang K; Zhou H; Li J; Diao C; Liu F; Wu A; Du G Opt Express; 2021 Sep; 29(20):31915-31923. PubMed ID: 34615273 [TBL] [Abstract][Full Text] [Related]
18. Analysis of tunable Faraday rotation angle produced by 1D photonic crystals doped with InSb in the terahertz regime. Zhang T; Li FY; Wang PX; Mao MY; Ma Y; Zhang D; Zhang H Appl Opt; 2021 Feb; 60(5):1448-1455. PubMed ID: 33690590 [TBL] [Abstract][Full Text] [Related]
19. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals. Kushwaha MS; Martinez G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461 [TBL] [Abstract][Full Text] [Related]
20. Construction of one-dimensional photonic crystals based on the incident angle domain. Huang B; Gu P; Yang L Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046601. PubMed ID: 14683059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]