These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 27464300)

  • 1. High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO2 Reduction.
    Choi J; Benedetti TM; Jalili R; Walker A; Wallace GG; Officer DL
    Chemistry; 2016 Sep; 22(40):14158-61. PubMed ID: 27464300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide.
    Abbasi P; Asadi M; Liu C; Sharifi-Asl S; Sayahpour B; Behranginia A; Zapol P; Shahbazian-Yassar R; Curtiss LA; Salehi-Khojin A
    ACS Nano; 2017 Jan; 11(1):453-460. PubMed ID: 27991762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO
    Azcarate I; Costentin C; Robert M; Savéant JM
    J Am Chem Soc; 2016 Dec; 138(51):16639-16644. PubMed ID: 27976580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic CO2 Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential.
    Grills DC; Matsubara Y; Kuwahara Y; Golisz SR; Kurtz DA; Mello BA
    J Phys Chem Lett; 2014 Jun; 5(11):2033-8. PubMed ID: 26273891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Powering a CO
    Lian S; Kodaimati MS; Dolzhnikov DS; Calzada R; Weiss EA
    J Am Chem Soc; 2017 Jul; 139(26):8931-8938. PubMed ID: 28608682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Reduction of CO2 at Metal Electrodes in a Distillable Ionic Liquid.
    Chen L; Guo SX; Li F; Bentley C; Horne M; Bond AM; Zhang J
    ChemSusChem; 2016 Jun; 9(11):1271-8. PubMed ID: 27164263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
    Tatin A; Comminges C; Kokoh B; Costentin C; Robert M; Savéant JM
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5526-9. PubMed ID: 27140621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MoP Nanoparticles Supported on Indium-Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO
    Sun X; Lu L; Zhu Q; Wu C; Yang D; Chen C; Han B
    Angew Chem Int Ed Engl; 2018 Feb; 57(9):2427-2431. PubMed ID: 29345804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering Distinct Overpotential-Dependent Pathways for Electrochemical CO
    Loipersberger M; Derrick JS; Chang CJ; Head-Gordon M
    Inorg Chem; 2022 May; 61(18):6919-6933. PubMed ID: 35452213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Appended Poly(ethylene glycol) on Electrochemical CO
    Chaturvedi A; Williams CK; Devi N; Jiang JJ
    Inorg Chem; 2021 Mar; 60(6):3843-3850. PubMed ID: 33629857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical reduction of aromatic ketones in 1-butyl-3-methylimidazolium-based ionic liquids in the presence of carbon dioxide: the influence of the ketone substituent and the ionic liquid anion on bulk electrolysis product distribution.
    Zhao SF; Horne M; Bond AM; Zhang J
    Phys Chem Chem Phys; 2015 Jul; 17(29):19247-54. PubMed ID: 26136079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous CO
    Sun X; Chen C; Liu S; Hong S; Zhu Q; Qian Q; Han B; Zhang J; Zheng L
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4669-4673. PubMed ID: 30729630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol.
    Sun X; Zhu Q; Kang X; Liu H; Qian Q; Zhang Z; Han B
    Angew Chem Int Ed Engl; 2016 Jun; 55(23):6771-5. PubMed ID: 27098284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergism between iron porphyrin and dicationic ionic liquids: tandem CO
    Miró R; Fernández-Llamazares E; Godard C; Díaz de Los Bernardos M; Gual A
    Chem Commun (Camb); 2022 Sep; 58(75):10552-10555. PubMed ID: 36047332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion.
    Costentin C; Passard G; Robert M; Savéant JM
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):14990-4. PubMed ID: 25288744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Molecular Mechanism of Cobalt Porphyrin Catalyzed CO
    Wu F; Jiang F; Yang J; Dai W; Lan D; Shen J; Fang Z
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Davethu PA; de Visser SP
    J Phys Chem A; 2019 Aug; 123(30):6527-6535. PubMed ID: 31283234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into Carbon Dioxide Electroreduction in Ionic Liquids: Carbon Dioxide Activation and Selectivity Tailored by Ionic Microhabitat.
    Feng J; Zeng S; Liu H; Feng J; Gao H; Bai L; Dong H; Zhang S; Zhang X
    ChemSusChem; 2018 Sep; 11(18):3191-3197. PubMed ID: 30022624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Electrocatalytic CO
    Gonçalves WDG; Zanatta M; Simon NM; Rutzen LM; Walsh DA; Dupont J
    ChemSusChem; 2019 Sep; 12(18):4170-4175. PubMed ID: 31271516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.