BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27464358)

  • 1. Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy.
    Ghita A; Matousek P; Stone N
    Analyst; 2016 Oct; 141(20):5738-5746. PubMed ID: 27464358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopy of white wines.
    Martin C; Bruneel JL; Guyon F; Médina B; Jourdes M; Teissedre PL; Guillaume F
    Food Chem; 2015 Aug; 181():235-40. PubMed ID: 25794745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging.
    Stürzl N; Lebedkin S; Klumpp S; Hennrich F; Kappes MM
    Anal Chem; 2013 May; 85(9):4554-9. PubMed ID: 23521587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.
    Vardaki MZ; Gardner B; Stone N; Matousek P
    Analyst; 2015 Aug; 140(15):5112-9. PubMed ID: 26075989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of hazardous chemical using dual-wavelength Raman spectroscopy in the ultraviolet region.
    Lee JH; Jeong YS; Koh YJ; Kim J; Nam H; Son H; Choi SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122061. PubMed ID: 36335749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of laser wavelength on the Raman Spectra of phenanthrene, chrysene, and tetracene: implications for extra-terrestrial detection of polyaromatic hydrocarbons.
    Alajtal AI; Edwards HG; Elbagerma MA; Scowen IJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jun; 76(1):1-5. PubMed ID: 20308013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue.
    Morris MD; Matousek P; Towrie M; Parker AW; Goodship AE; Draper ER
    J Biomed Opt; 2005; 10(1):14014. PubMed ID: 15847595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers.
    Malherbe C; Hutchinson IB; McHugh M; Ingley R; Jehlička J; Edwards HGM
    Astrobiology; 2017 Apr; 17(4):351-362. PubMed ID: 28418705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-wavelength excitation combined Raman spectroscopy for detection of highly fluorescent samples.
    Ye J; Li J; Lu M; Qi X; Li B; Wei H; Li Y; Zou M
    Appl Opt; 2021 Aug; 60(23):6918-6927. PubMed ID: 34613173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiwavelength Raman Spectroscopic Analysis of Superficial Iron-Chromium Oxides Generated Using Laser Irradiation.
    Ortiz-Morales M; Soto-Bernal JJ; Frausto-Reyes C; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I
    Appl Spectrosc; 2018 Jun; 72(6):879-885. PubMed ID: 29381100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.
    Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T
    Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High sensitivity non-invasive detection of calcifications deep inside biological tissue using Transmission Raman Spectroscopy.
    Ghita A; Matousek P; Stone N
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28635141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red-shifted fluorescence of sound dental hard tissue.
    Zhang L; Nelson LY; Seibel EJ
    J Biomed Opt; 2011 Jul; 16(7):071411. PubMed ID: 21806257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Raman Spectroscopy Measurement System of Dual Wavelength Laser Module].
    Fan XG; Li F; Wang X; Xu YJ; Zeng YM; Chen QZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):640-4. PubMed ID: 26117871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light.
    Feng S; Chen R; Lin J; Pan J; Wu Y; Li Y; Chen J; Zeng H
    Biosens Bioelectron; 2011 Mar; 26(7):3167-74. PubMed ID: 21227679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state.
    Lu L; Shi L; Secor J; Alfano R
    J Photochem Photobiol B; 2018 Feb; 179():18-22. PubMed ID: 29306722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light.
    Puppels GJ; Olminkhof JH; Segers-Nolten GM; Otto C; de Mul FF; Greve J
    Exp Cell Res; 1991 Aug; 195(2):361-7. PubMed ID: 2070819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary analysis of tissue homogenates composition obtained by Vis and NIR laser excitations and Raman spectroscopy.
    Staniszewska-Slezak E; Malek K; Baranska M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Aug; 147():245-56. PubMed ID: 25847786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopic investigation of solid samples using a low-repetition-rate pulsed Nd:YAG laser as the excitation source.
    Zhang J; Feng Z; Li M; Chen J; Xu Q; Lian Y; Li C
    Appl Spectrosc; 2007 Jan; 61(1):38-47. PubMed ID: 17311715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Note: deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application.
    Jin S; Fan F; Guo M; Zhang Y; Feng Z; Li C
    Rev Sci Instrum; 2014 Apr; 85(4):046105. PubMed ID: 24784683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.