These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 27464459)
1. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet. Lee Y; Yoshitsugu R; Kikuchi K; Joe GH; Tsuji M; Nose T; Shimizu H; Hara H; Minamida K; Miwa K; Ishizuka S Br J Nutr; 2016 Aug; 116(4):603-10. PubMed ID: 27464459 [TBL] [Abstract][Full Text] [Related]
2. Ingestion of difructose anhydride III partially suppresses the deconjugation and 7α-dehydroxylation of bile acids in rats fed with a cholic acid-supplemented diet. Lee DG; Hori S; Kohmoto O; Kitta S; Yoshida R; Tanaka Y; Shimizu H; Takahashi K; Nagura T; Uchino H; Fukiya S; Yokota A; Ishizuka S Biosci Biotechnol Biochem; 2019 Jul; 83(7):1329-1335. PubMed ID: 30912732 [TBL] [Abstract][Full Text] [Related]
3. Diet supplementation with cholic acid promotes intestinal epithelial proliferation in rats exposed to γ-radiation. Hagio M; Shimizu H; Joe GH; Takatsuki M; Shiwaku M; Xu H; Lee JY; Fujii N; Fukiya S; Hara H; Yokota A; Ishizuka S Toxicol Lett; 2015 Jan; 232(1):246-52. PubMed ID: 25455456 [TBL] [Abstract][Full Text] [Related]
4. Synbiotic supplementation with prebiotic green banana resistant starch and probiotic Bacillus coagulans spores ameliorates gut inflammation in mouse model of inflammatory bowel diseases. Shinde T; Perera AP; Vemuri R; Gondalia SV; Beale DJ; Karpe AV; Shastri S; Basheer W; Southam B; Eri R; Stanley R Eur J Nutr; 2020 Dec; 59(8):3669-3689. PubMed ID: 32067099 [TBL] [Abstract][Full Text] [Related]
5. Strain-dependent induction of primary bile acid 7-dehydroxylation by cholic acid. Vico-Oton E; Volet C; Jacquemin N; Dong Y; Hapfelmeier S; Meibom KL; Bernier-Latmani R BMC Microbiol; 2024 Aug; 24(1):286. PubMed ID: 39090543 [TBL] [Abstract][Full Text] [Related]
6. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis. Wang S; Dong W; Liu L; Xu M; Wang Y; Liu T; Zhang Y; Wang B; Cao H Mol Carcinog; 2019 Jul; 58(7):1155-1167. PubMed ID: 30828892 [TBL] [Abstract][Full Text] [Related]
7. Quantitative profiling of 19 bile acids in rat plasma, liver, bile and different intestinal section contents to investigate bile acid homeostasis and the application of temporal variation of endogenous bile acids. Yang T; Shu T; Liu G; Mei H; Zhu X; Huang X; Zhang L; Jiang Z J Steroid Biochem Mol Biol; 2017 Sep; 172():69-78. PubMed ID: 28583875 [TBL] [Abstract][Full Text] [Related]
8. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. Hu X; Bonde Y; Eggertsen G; Rudling M J Intern Med; 2014 Jan; 275(1):27-38. PubMed ID: 24118394 [TBL] [Abstract][Full Text] [Related]
9. Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats. Maegawa K; Koyama H; Fukiya S; Yokota A; Ueda K; Ishizuka S Br J Nutr; 2022 Jun; 127(11):1621-1630. PubMed ID: 34256877 [TBL] [Abstract][Full Text] [Related]
10. Effects of feeding bile acids and a bile acid sequestrant on hepatic bile acid composition in mice. Zhang Y; Klaassen CD J Lipid Res; 2010 Nov; 51(11):3230-42. PubMed ID: 20671298 [TBL] [Abstract][Full Text] [Related]
11. The gut bacterium Streidl T; Karkossa I; Segura Muñoz RR; Eberl C; Zaufel A; Plagge J; Schmaltz R; Schubert K; Basic M; Schneider KM; Afify M; Trautwein C; Tolba R; Stecher B; Doden HL; Ridlon JM; Ecker J; Moustafa T; von Bergen M; Ramer-Tait AE; Clavel T Gut Microbes; 2021; 13(1):1-21. PubMed ID: 33382950 [No Abstract] [Full Text] [Related]
12. Ex vivo metabolism kinetics of primary to secondary bile acids via a physiologically relevant human faecal microbiota model. Ng DZW; Low A; Tan AJH; Ong JH; Kwa WT; Lee JWJ; Chan ECY Chem Biol Interact; 2024 Aug; 399():111140. PubMed ID: 38992765 [TBL] [Abstract][Full Text] [Related]
13. Dietary resistant starch supplementation increases gut luminal deoxycholic acid abundance in mice. Reuter MA; Tucker M; Marfori Z; Shishani R; Bustamante JM; Moreno R; Goodson ML; Ehrlich A; Taha AY; Lein PJ; Joshi N; Brito I; Durbin-Johnson B; Nandakumar R; Cummings BP Gut Microbes; 2024; 16(1):2315632. PubMed ID: 38375831 [TBL] [Abstract][Full Text] [Related]
14. Effect of fructo-oligosaccharide supplementation in soya beverage on the intestinal absorption of calcium and iron in newly weaned rats. de Lima Correia Silva M; da Graça Leite Speridião P; Oyama LM; de Morais MB Br J Nutr; 2018 Dec; 120(12):1338-1348. PubMed ID: 30499425 [TBL] [Abstract][Full Text] [Related]
16. High-fat Diet-induced Intestinal Hyperpermeability is Associated with Increased Bile Acids in the Large Intestine of Mice. Murakami Y; Tanabe S; Suzuki T J Food Sci; 2016 Jan; 81(1):H216-22. PubMed ID: 26595891 [TBL] [Abstract][Full Text] [Related]
17. Bile acid concentrations in serum and duodenal aspirates of healthy preterm infants: effects of gestational and postnatal age. Boehm G; Braun W; Moro G; Minoli I Biol Neonate; 1997; 71(4):207-14. PubMed ID: 9129789 [TBL] [Abstract][Full Text] [Related]
18. Intestinal microflora and bile acids. Effect of bile acids on the distribution of microflora and bile acid in the digestive tract of the rat. Sakai K; Makino T; Kawai Y; Mutai M Microbiol Immunol; 1980; 24(3):187-96. PubMed ID: 6447830 [TBL] [Abstract][Full Text] [Related]
19. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Kübeck R; Bonet-Ripoll C; Hoffmann C; Walker A; Müller VM; Schüppel VL; Lagkouvardos I; Scholz B; Engel KH; Daniel H; Schmitt-Kopplin P; Haller D; Clavel T; Klingenspor M Mol Metab; 2016 Dec; 5(12):1162-1174. PubMed ID: 27900259 [TBL] [Abstract][Full Text] [Related]
20. Effect of cholesterol, cholic acid and cholestyramine administration on the intestinal mRNA expressions related to cholesterol and bile acid metabolism in the rat. Kamisako T; Ogawa H; Yamamoto K J Gastroenterol Hepatol; 2007 Nov; 22(11):1832-7. PubMed ID: 17498222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]