These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Alteration of in vitro bone metabolism and tooth formation by zinc. Togari A; Arakawa S; Arai M; Matsumoto S Gen Pharmacol; 1993 Sep; 24(5):1133-40. PubMed ID: 8270172 [TBL] [Abstract][Full Text] [Related]
5. Effects of zinc on the mineralization of bone nodules from human osteoblast-like cells. Cerovic A; Miletic I; Sobajic S; Blagojevic D; Radusinovic M; El-Sohemy A Biol Trace Elem Res; 2007 Apr; 116(1):61-71. PubMed ID: 17634628 [TBL] [Abstract][Full Text] [Related]
6. Cadmium-induced reduction of bone alkaline phosphatase and its prevention by zinc. Bonner FW; King LJ; Parke DV Chem Biol Interact; 1980 Mar; 29(3):369-72. PubMed ID: 7357680 [TBL] [Abstract][Full Text] [Related]
7. The effects of cadmium on a clonal osteogenetic cell, MC3T3-E1: inhibition of calcification and induction of metallothionein-like protein by cadmium. Miyahara T; Yamada H; Ando R; Nemoto S; Kaji T; Mori M; Kozuka H; Itoh N; Sudo H Toxicol Lett; 1986; 32(1-2):19-27. PubMed ID: 3738928 [TBL] [Abstract][Full Text] [Related]
8. Action of zinc on bone metabolism in rats. Increases in alkaline phosphatase activity and DNA content. Yamaguchi M; Yamaguchi R Biochem Pharmacol; 1986 Mar; 35(5):773-7. PubMed ID: 3954786 [TBL] [Abstract][Full Text] [Related]
13. Bone morphogenetic protein-2 restores mineralization in glucocorticoid-inhibited MC3T3-E1 osteoblast cultures. Luppen CA; Smith E; Spevak L; Boskey AL; Frenkel B J Bone Miner Res; 2003 Jul; 18(7):1186-97. PubMed ID: 12854828 [TBL] [Abstract][Full Text] [Related]
14. Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism. Suzuki N; Yamamoto M; Watanabe K; Kambegawa A; Hattori A J Bone Miner Metab; 2004; 22(5):439-46. PubMed ID: 15316864 [TBL] [Abstract][Full Text] [Related]
15. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. Quarles LD; Yohay DA; Lever LW; Caton R; Wenstrup RJ J Bone Miner Res; 1992 Jun; 7(6):683-92. PubMed ID: 1414487 [TBL] [Abstract][Full Text] [Related]
16. Sanguis Draconis resin stimulates osteoblast alkaline phosphatase activity and mineralization in MC3T3-E1 cells. Wang W; Olson D; Cheng B; Guo X; Wang K J Ethnopharmacol; 2012 Jun; 142(1):168-74. PubMed ID: 22543168 [TBL] [Abstract][Full Text] [Related]
17. Genistein and zinc synergistically enhance gene expression and mineralization in osteoblastic MC3T3-E1 cells. Uchiyama S; Yamaguchi M Int J Mol Med; 2007 Feb; 19(2):213-20. PubMed ID: 17203194 [TBL] [Abstract][Full Text] [Related]
18. Demonstration of alkaline phosphatase participation in the mineralization of osteoblasts by antisense RNA approach. Torii Y; Hitomi K; Yamagishi Y; Tsukagoshi N Cell Biol Int; 1996 Jul; 20(7):459-64. PubMed ID: 8931312 [TBL] [Abstract][Full Text] [Related]
19. Effects of bisphosphonates on alkaline phosphatase activity, mineralization, and prostaglandin E2 synthesis in the clonal osteoblast-like cell line MC3T3-E1. Igarashi K; Hirafuji M; Adachi H; Shinoda H; Mitani H Prostaglandins Leukot Essent Fatty Acids; 1997 Feb; 56(2):121-5. PubMed ID: 9051721 [TBL] [Abstract][Full Text] [Related]
20. Role of zinc in protection against cadmium-induced toxicity in formation of embryonic chick bone in tissue culture. Kaji T; Takata M; Hoshino T; Miyahara T; Kozuka H; Kurashige Y; Koizumi F Toxicol Lett; 1988 Nov; 44(1-2):219-27. PubMed ID: 3188080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]