BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27464820)

  • 21. Calcium Imaging of Neuronal Activity in Free-Swimming Larval Zebrafish.
    Muto A; Kawakami K
    Methods Mol Biol; 2016; 1451():333-41. PubMed ID: 27464819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Full-field exposure of larval zebrafish to narrow waveband LED light sources at defined power and energy for optogenetic applications.
    Burton AH; Jiao B; Bai Q; Van Laar VS; Wheeler TB; Watkins SC; Bruchez MP; Burton EA
    J Neurosci Methods; 2024 Jan; 401():110001. PubMed ID: 37914002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics.
    Favre-Bulle IA; Preece D; Nieminen TA; Heap LA; Scott EK; Rubinsztein-Dunlop H
    Sci Rep; 2015 Jun; 5():11501. PubMed ID: 26108566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronically implantable LED arrays for behavioral optogenetics in primates.
    Rajalingham R; Sorenson M; Azadi R; Bohn S; DiCarlo JJ; Afraz A
    Nat Methods; 2021 Sep; 18(9):1112-1116. PubMed ID: 34462591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-density multi-fiber photometry for studying large-scale brain circuit dynamics.
    Sych Y; Chernysheva M; Sumanovski LT; Helmchen F
    Nat Methods; 2019 Jun; 16(6):553-560. PubMed ID: 31086339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zebrafish as an appealing model for optogenetic studies.
    Simmich J; Staykov E; Scott E
    Prog Brain Res; 2012; 196():145-62. PubMed ID: 22341325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.
    Buckley CE; Moore RE; Reade A; Goldberg AR; Weiner OD; Clarke JDW
    Dev Cell; 2016 Jan; 36(1):117-126. PubMed ID: 26766447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish.
    De Marco RJ; Groneberg AH; Yeh CM; Castillo Ramírez LA; Ryu S
    Front Neural Circuits; 2013; 7():82. PubMed ID: 23653595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high-conductance chemo-optogenetic system based on the vertebrate channel Trpa1b.
    Lam PY; Mendu SK; Mills RW; Zheng B; Padilla H; Milan DJ; Desai BN; Peterson RT
    Sci Rep; 2017 Sep; 7(1):11839. PubMed ID: 28928472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral properties of the zebrafish visual motor response.
    Burton CE; Zhou Y; Bai Q; Burton EA
    Neurosci Lett; 2017 Apr; 646():62-67. PubMed ID: 28267562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
    Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K
    Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Let there be light: zebrafish neurobiology and the optogenetic revolution.
    Wyart C; Del Bene F
    Rev Neurosci; 2011; 22(1):121-30. PubMed ID: 21615266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted cell ablation in zebrafish using optogenetic transcriptional control.
    Mruk K; Ciepla P; Piza PA; Alnaqib MA; Chen JK
    Development; 2020 Jun; 147(12):. PubMed ID: 32414936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light distribution and thermal effects in the rat brain under optogenetic stimulation.
    Gysbrechts B; Wang L; Trong NN; Cabral H; Navratilova Z; Battaglia F; Saeys W; Bartic C
    J Biophotonics; 2016 Jun; 9(6):576-85. PubMed ID: 26192551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures.
    Tamura K; Ohashi Y; Tsubota T; Takeuchi D; Hirabayashi T; Yaguchi M; Matsuyama M; Sekine T; Miyashita Y
    J Neurosci Methods; 2012 Oct; 211(1):49-57. PubMed ID: 22971353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optogenetics. Engineering of a light-gated potassium channel.
    Cosentino C; Alberio L; Gazzarrini S; Aquila M; Romano E; Cermenati S; Zuccolini P; Petersen J; Beltrame M; Van Etten JL; Christie JM; Thiel G; Moroni A
    Science; 2015 May; 348(6235):707-10. PubMed ID: 25954011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature Rise under Two-Photon Optogenetic Brain Stimulation.
    Picot A; Dominguez S; Liu C; Chen IW; Tanese D; Ronzitti E; Berto P; Papagiakoumou E; Oron D; Tessier G; Forget BC; Emiliani V
    Cell Rep; 2018 Jul; 24(5):1243-1253.e5. PubMed ID: 30067979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissecting Mechanisms of Motivation within the Nucleus Accumbens Using Optogenetics.
    Cole SL; Olney JJ
    Methods Mol Biol; 2021; 2191():323-349. PubMed ID: 32865753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.