BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27464950)

  • 1. Competition-driven build-up of habitat isolation and selection favoring modified dispersal patterns in a young avian hybrid zone.
    Rybinski J; Sirkiä PM; McFarlane SE; Vallin N; Wheatcroft D; Ålund M; Qvarnström A
    Evolution; 2016 Oct; 70(10):2226-2238. PubMed ID: 27464950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive feedback between ecological and reproductive character displacement in a young avian hybrid zone.
    Vallin N; Rice AM; Bailey RI; Husby A; Qvarnström A
    Evolution; 2012 Apr; 66(4):1167-79. PubMed ID: 22486696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate-driven build-up of temporal isolation within a recently formed avian hybrid zone.
    Sirkiä PM; McFarlane SE; Jones W; Wheatcroft D; Ålund M; Rybinski J; Qvarnström A
    Evolution; 2018 Feb; 72(2):363-374. PubMed ID: 29214649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal differences in food abundance promote coexistence between two congeneric passerines.
    Veen T; Sheldon BC; Weissing FJ; Visser ME; Qvarnström A; Saetre GP
    Oecologia; 2010 Apr; 162(4):873-84. PubMed ID: 20043178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interspecific competition promotes habitat and morphological divergence in a secondary contact zone between two hybridizing songbirds.
    Sottas C; Reif J; Kuczyński L; Reifová R
    J Evol Biol; 2018 Jun; 31(6):914-923. PubMed ID: 29603471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malaria infections reinforce competitive asymmetry between two Ficedula flycatchers in a recent contact zone.
    Kulma K; Low M; Bensch S; Qvarnström A
    Mol Ecol; 2013 Sep; 22(17):4591-601. PubMed ID: 23980765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecology and genetics of speciation in Ficedula flycatchers.
    Saetre GP; Saether SA
    Mol Ecol; 2010 Mar; 19(6):1091-106. PubMed ID: 20163542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natal habitat imprinting counteracts the diversifying effects of phenotype-dependent dispersal in a spatially structured population.
    Camacho C; Canal D; Potti J
    BMC Evol Biol; 2016 Aug; 16():158. PubMed ID: 27503506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproductive character displacement of female, but not male song discrimination in an avian hybrid zone.
    Wheatcroft D; Qvarnström A
    Evolution; 2017 Jul; 71(7):1776-1786. PubMed ID: 28493350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Females discriminate against heterospecific sperm in a natural hybrid zone.
    Cramer ER; Ålund M; McFarlane SE; Johnsen A; Qvarnström A
    Evolution; 2016 Aug; 70(8):1844-55. PubMed ID: 27312694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Song similarity predicts hybridization in flycatchers.
    Qvarnström A; Haavie J; Saether SA; Eriksson D; Pärt T
    J Evol Biol; 2006 Jul; 19(4):1202-9. PubMed ID: 16780521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life-history divergence facilitates regional coexistence of competing Ficedula flycatchers.
    Qvarnström A; Wiley C; Svedin N; Vallin N
    Ecology; 2009 Jul; 90(7):1948-57. PubMed ID: 19694142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative performance of hybrid nestlings in Ficedula flycatchers: a translocation experiment.
    Vallin N; Nonaka Y; Feng J; Qvarnström A
    Ecol Evol; 2013 Feb; 3(2):356-64. PubMed ID: 23467681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridization and adaptive mate choice in flycatchers.
    Veen T; Borge T; Griffith SC; Saetre GP; Bures S; Gustafsson L; Sheldon BC
    Nature; 2001 May; 411(6833):45-50. PubMed ID: 11333971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-density scan of the Z chromosome in Ficedula flycatchers reveals candidate loci for diversifying selection.
    Backström N; Lindell J; Zhang Y; Palkopoulou E; Qvarnström A; Saetre GP; Ellegren H
    Evolution; 2010 Dec; 64(12):3461-75. PubMed ID: 20629730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postzygotic isolation over multiple generations of hybrid descendents in a natural hybrid zone: how well do single-generation estimates reflect reproductive isolation?
    Wiley C; Qvarnström A; Andersson G; Borge T; Saetre GP
    Evolution; 2009 Jul; 63(7):1731-9. PubMed ID: 19245675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coevolutionary Interactions between Sexual and Habitat Isolation during Reinforcement.
    Yukilevich R; Aoki F; Egan S; Zhang L
    Cold Spring Harb Perspect Biol; 2024 May; 16(5):. PubMed ID: 38316551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in incubation behaviour and niche separation of two competing flycatcher species.
    Koski TM; Sirkiä PM; McFarlane SE; Ålund M; Qvarnström A
    Behav Ecol Sociobiol; 2020; 74(8):105. PubMed ID: 32801426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate adaptation and speciation: particular focus on reproductive barriers in Ficedula flycatchers.
    Qvarnström A; Ålund M; McFarlane SE; Sirkiä PM
    Evol Appl; 2016 Jan; 9(1):119-34. PubMed ID: 27087843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation.
    Burger C; Belskii E; Eeva T; Laaksonen T; Mägi M; Mänd R; Qvarnström A; Slagsvold T; Veen T; Visser ME; Wiebe KL; Wiley C; Wright J; Both C
    J Anim Ecol; 2012 Jul; 81(4):926-36. PubMed ID: 22356622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.