These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27465779)

  • 1. Antiproliferative activity of Juglone derivatives on rat glioma.
    Pavan V; Ribaudo G; Zorzan M; Redaelli M; Pezzani R; Mucignat-Caretta C; Zagotto G
    Nat Prod Res; 2017 Mar; 31(6):632-638. PubMed ID: 27465779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on Cytotoxic Activity against HepG-2 Cells of Naphthoquinones from Green Walnut Husks of Juglans mandshurica Maxim.
    Zhou Y; Yang B; Jiang Y; Liu Z; Liu Y; Wang X; Kuang H
    Molecules; 2015 Aug; 20(9):15572-88. PubMed ID: 26343618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antiproliferative activity of synthetic naphthoquinones related to lapachol. First synthesis of 5-hydroxylapachol.
    Bonifazi EL; Ríos-Luci C; León LG; Burton G; Padrón JM; Misico RI
    Bioorg Med Chem; 2010 Apr; 18(7):2621-30. PubMed ID: 20304655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New naphthoquinone derivatives against glioma cells.
    Redaelli M; Mucignat-Caretta C; Isse AA; Gennaro A; Pezzani R; Pasquale R; Pavan V; Crisma M; Ribaudo G; Zagotto G
    Eur J Med Chem; 2015; 96():458-66. PubMed ID: 25916907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoisomerase I and topoisomerase II.
    Xu H; Chen Q; Wang H; Xu P; Yuan R; Li X; Bai L; Xue M
    J Exp Clin Cancer Res; 2016 Nov; 35(1):178. PubMed ID: 27852319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity guided isolation and modification of juglone from Juglans regia as potent cytotoxic agent against lung cancer cell lines.
    Zhang XB; Zou CL; Duan YX; Wu F; Li G
    BMC Complement Altern Med; 2015 Nov; 15():396. PubMed ID: 26530090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Hydroxy-1,4-naphthalenedione exerts anticancer effects on glioma cells through interaction with the mitochondrial electron transport chain.
    Sidlauskas K; Sidlauskiene R; Li N; Liobikas J
    Neurosci Lett; 2017 Feb; 639():207-214. PubMed ID: 28069455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxic Compounds from Juglans sinensis Dode Display Anti-Proliferative Activity by Inducing Apoptosis in Human Cancer Cells.
    Lee YJ; Cui J; Lee J; Han AR; Lee EB; Jang HH; Seo EK
    Molecules; 2016 Jan; 21(1):E120. PubMed ID: 26805799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma.
    Wu J; Zhang H; Xu Y; Zhang J; Zhu W; Zhang Y; Chen L; Hua W; Mao Y
    BMC Neurol; 2017 Apr; 17(1):70. PubMed ID: 28388894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-proliferative effect of Juglone from Juglans mandshurica Maxim on human leukemia cell HL-60 by inducing apoptosis through the mitochondria-dependent pathway.
    Xu HL; Yu XF; Qu SC; Zhang R; Qu XR; Chen YP; Ma XY; Sui DY
    Eur J Pharmacol; 2010 Oct; 645(1-3):14-22. PubMed ID: 20655907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells.
    Aithal BK; Kumar MR; Rao BN; Udupa N; Rao BS
    Cell Biol Int; 2009 Oct; 33(10):1039-49. PubMed ID: 19555768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Juglone: A Versatile Natural Platform for Obtaining New Bioactive Compounds.
    Dos S Moreira C; Santos TB; Freitas RHCN; Pacheco PAF; da Rocha DR
    Curr Top Med Chem; 2021; 21(22):2018-2045. PubMed ID: 34348624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Characterization of Phytochemical Composition, Membrane Permeability, and Antiproliferative Activity of
    Osztie R; Czeglédi T; Ross S; Stipsicz B; Kalydi E; Béni S; Boldizsár I; Riethmüller E; Bősze SE; Alberti Á
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Juglone reduces growth and migration of U251 glioblastoma cells and disrupts angiogenesis.
    Wang J; Liu K; Wang XF; Sun DJ
    Oncol Rep; 2017 Oct; 38(4):1959-1966. PubMed ID: 28791366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel nor-monoterpenoid indole alkaloids inhibiting glioma stem cells from fruits of Alstonia scholaris.
    Wang B; Dai Z; Yang XW; Liu YP; Khan A; Yang ZF; Huang WY; Wang XH; Zhao XD; Luo XD
    Phytomedicine; 2018 Sep; 48():170-178. PubMed ID: 30195875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development.
    Tang YT; Li Y; Chu P; Ma XD; Tang ZY; Sun ZL
    Biomed Pharmacother; 2022 Apr; 148():112785. PubMed ID: 35272138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiglioma activity of GoPI-sugar, a novel gold(I)-phosphole inhibitor: chemical synthesis, mechanistic studies, and effectiveness in vivo.
    Jortzik E; Farhadi M; Ahmadi R; Tóth K; Lohr J; Helmke BM; Kehr S; Unterberg A; Ott I; Gust R; Deborde V; Davioud-Charvet E; Réau R; Becker K; Herold-Mende C
    Biochim Biophys Acta; 2014 Aug; 1844(8):1415-26. PubMed ID: 24440405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NVP-BEZ235, a novel dual PI3K-mTOR inhibitor displays anti-glioma activity and reduces chemoresistance to temozolomide in human glioma cells.
    Yu Z; Xie G; Zhou G; Cheng Y; Zhang G; Yao G; Chen Y; Li Y; Zhao G
    Cancer Lett; 2015 Oct; 367(1):58-68. PubMed ID: 26188279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of juglone (5-hydroxy-1,4,-naphthoquinone) using voltammetry and spectrophotometric methods.
    Masek A; Chrzescijanska E; Latos-Brozio M; Zaborski M
    Food Chem; 2019 Dec; 301():125279. PubMed ID: 31377612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lawsone, Juglone, and β-Lapachone Derivatives with Enhanced Mitochondrial-Based Toxicity.
    Anaissi-Afonso L; Oramas-Royo S; Ayra-Plasencia J; Martín-Rodríguez P; García-Luis J; Lorenzo-Castrillejo I; Fernández-Pérez L; Estévez-Braun A; Machín F
    ACS Chem Biol; 2018 Aug; 13(8):1950-1957. PubMed ID: 29878754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.