BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27465852)

  • 21. Exploiting nonionic surfactants to enhance fatty alcohol production in Rhodosporidium toruloides.
    Liu D; Geiselman GM; Coradetti S; Cheng YF; Kirby J; Prahl JP; Jacobson O; Sundstrom ER; Tanjore D; Skerker JM; Gladden J
    Biotechnol Bioeng; 2020 May; 117(5):1418-1425. PubMed ID: 31981215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of C16 and C18 fatty alcohol production by an engineered strain of Lipomyces starkeyi.
    McNeil BA; Stuart DT
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):1-14. PubMed ID: 29076046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved fatty aldehyde and wax ester production by overexpression of fatty acyl-CoA reductases.
    Lehtinen T; Efimova E; Santala S; Santala V
    Microb Cell Fact; 2018 Feb; 17(1):19. PubMed ID: 29422050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol.
    Willis RM; Wahlen BD; Seefeldt LC; Barney BM
    Biochemistry; 2011 Dec; 50(48):10550-8. PubMed ID: 22035211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of microorganisms for the production of structurally diverse esters.
    Menendez-Bravo S; Comba S; Gramajo H; Arabolaza A
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3043-3053. PubMed ID: 28275821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications.
    Rowland O; Domergue F
    Plant Sci; 2012 Sep; 193-194():28-38. PubMed ID: 22794916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae.
    Wenning L; Yu T; David F; Nielsen J; Siewers V
    Biotechnol Bioeng; 2017 May; 114(5):1025-1035. PubMed ID: 27858995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.
    Miklaszewska M; Banaś A
    Plant Sci; 2016 Aug; 249():84-92. PubMed ID: 27297992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae.
    Kang MK; Zhou YJ; Buijs NA; Nielsen J
    Microb Cell Fact; 2017 May; 16(1):74. PubMed ID: 28464872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels.
    Adrio JL
    Biotechnol Bioeng; 2017 Sep; 114(9):1915-1920. PubMed ID: 28498495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli.
    Doan TT; Carlsson AS; Hamberg M; Bülow L; Stymne S; Olsson P
    J Plant Physiol; 2009 May; 166(8):787-96. PubMed ID: 19062129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering an Escherichia coli platform to synthesize designer biodiesels.
    Wierzbicki M; Niraula N; Yarrabothula A; Layton DS; Trinh CT
    J Biotechnol; 2016 Apr; 224():27-34. PubMed ID: 26953744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose.
    Cao Y; Cheng T; Zhao G; Niu W; Guo J; Xian M; Liu H
    BMC Biotechnol; 2016 Mar; 16():26. PubMed ID: 26956722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.
    Yu P; Chen X; Li P
    Biotechnol Appl Biochem; 2017 Sep; 64(5):606-619. PubMed ID: 27507087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Advance in producing higher alcohols by microbial cell factories].
    Liu Z; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1421-30. PubMed ID: 24432657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.
    Zhou YJ; Buijs NA; Zhu Z; Qin J; Siewers V; Nielsen J
    Nat Commun; 2016 May; 7():11709. PubMed ID: 27222209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces.
    Liu L; Redden H; Alper HS
    Curr Opin Biotechnol; 2013 Dec; 24(6):1023-30. PubMed ID: 23541504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of amino acids conferring chain length substrate specificities on fatty alcohol-forming reductases FAR5 and FAR8 from Arabidopsis thaliana.
    Chacón MG; Fournier AE; Tran F; Dittrich-Domergue F; Pulsifer IP; Domergue F; Rowland O
    J Biol Chem; 2013 Oct; 288(42):30345-30355. PubMed ID: 24005667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of 1-decanol by metabolically engineered Yarrowia lipolytica.
    Rutter CD; Rao CV
    Metab Eng; 2016 Nov; 38():139-147. PubMed ID: 27471068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.