BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 27466056)

  • 1. Mathematical modelling of microtumour infiltration based on in vitro experiments.
    Luján E; Guerra LN; Soba A; Visacovsky N; Gandía D; Calvo JC; Suárez C
    Integr Biol (Camb); 2016 Aug; 8(8):879-85. PubMed ID: 27466056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by in vitro studies.
    Luján E; Soto D; Rosito MS; Soba A; Guerra LN; Calvo JC; Marshall G; Suárez C
    Integr Biol (Camb); 2018 May; 10(5):325-334. PubMed ID: 29741547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating growth dynamics and radiation response of avascular tumour spheroids-model validation in the case of an EMT6/Ro multicellular spheroid.
    Zacharaki EI; Stamatakos GS; Nikita KS; Uzunoglu NK
    Comput Methods Programs Biomed; 2004 Dec; 76(3):193-206. PubMed ID: 15501506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of intrinsic in vitro cellular mechanisms for glioma invasion.
    Tektonidis M; Hatzikirou H; Chauvière A; Simon M; Schaller K; Deutsch A
    J Theor Biol; 2011 Oct; 287():131-47. PubMed ID: 21816160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain glioma growth model using reaction-diffusion equation with viscous stress tensor on brain MR images.
    Yuan J; Liu L
    Magn Reson Imaging; 2016 Feb; 34(2):114-9. PubMed ID: 26518060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion.
    Painter KJ; Hillen T
    J Theor Biol; 2013 Apr; 323():25-39. PubMed ID: 23376578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biology and mathematical modelling of glioma invasion: a review.
    Alfonso JCL; Talkenberger K; Seifert M; Klink B; Hawkins-Daarud A; Swanson KR; Hatzikirou H; Deutsch A
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29118112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model.
    Deisboeck TS; Berens ME; Kansal AR; Torquato S; Stemmer-Rachamimov AO; Chiocca EA
    Cell Prolif; 2001 Apr; 34(2):115-34. PubMed ID: 11348426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of efficient protocols to control glioma growth.
    Branco JR; Ferreira JA; de Oliveira P
    Math Biosci; 2014 Sep; 255():83-90. PubMed ID: 25057777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion.
    Andasari V; Roper RT; Swat MH; Chaplain MA
    PLoS One; 2012; 7(3):e33726. PubMed ID: 22461894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative model for differential motility of gliomas in grey and white matter.
    Swanson KR; Alvord EC; Murray JD
    Cell Prolif; 2000 Oct; 33(5):317-29. PubMed ID: 11063134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiscale model for avascular tumor growth.
    Jiang Y; Pjesivac-Grbovic J; Cantrell C; Freyer JP
    Biophys J; 2005 Dec; 89(6):3884-94. PubMed ID: 16199495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular automata coupled with steady-state nutrient solution permit simulation of large-scale growth of tumours.
    Shrestha SM; Joldes GR; Wittek A; Miller K
    Int J Numer Method Biomed Eng; 2013 Apr; 29(4):542-59. PubMed ID: 23382053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary glioma spheroids maintain tumourogenicity and essential phenotypic traits after cryopreservation.
    Sundlisaeter E; Wang J; Sakariassen PØ; Marie M; Mathisen JR; Karlsen BO; Prestegarden L; Skaftnesmo KO; Bjerkvig R; Enger PØ
    Neuropathol Appl Neurobiol; 2006 Aug; 32(4):419-27. PubMed ID: 16866987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From passive diffusion to active cellular migration in mathematical models of tumour invasion.
    Tracqui P
    Acta Biotheor; 1995 Dec; 43(4):443-64. PubMed ID: 8919353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An innovative iterative thresholding algorithm for tumour segmentation and volumetric quantification on SPECT images: Monte Carlo-based methodology and validation.
    Pacilio M; Basile C; Shcherbinin S; Caselli F; Ventroni G; Aragno D; Mango L; Santini E
    Med Phys; 2011 Jun; 38(6):3050-61. PubMed ID: 21815378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glioma cell invasion visualized by scanning confocal laser microscopy in an in vitro co-culture system.
    Nygaard SJ; Pedersen PH; Mikkelsen T; Terzis AJ; Tysnes OB; Bjerkvig R
    Invasion Metastasis; 1995; 15(5-6):179-88. PubMed ID: 8765192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging.
    Jbabdi S; Mandonnet E; Duffau H; Capelle L; Swanson KR; Pélégrini-Issac M; Guillevin R; Benali H
    Magn Reson Med; 2005 Sep; 54(3):616-24. PubMed ID: 16088879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new mathematical model for avascular tumour growth.
    Sherratt JA; Chaplain MA
    J Math Biol; 2001 Oct; 43(4):291-312. PubMed ID: 12120870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach.
    Loessner D; Flegg JA; Byrne HM; Clements JA; Hutmacher DW
    Integr Biol (Camb); 2013 Mar; 5(3):597-605. PubMed ID: 23388834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.