These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 27466132)

  • 1. Functional versus effector-specific organization of the human posterior parietal cortex: revisited.
    Heed T; Leone FT; Toni I; Medendorp WP
    J Neurophysiol; 2016 Oct; 116(4):1885-1899. PubMed ID: 27466132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional rather than effector-specific organization of human posterior parietal cortex.
    Heed T; Beurze SM; Toni I; Röder B; Medendorp WP
    J Neurosci; 2011 Feb; 31(8):3066-76. PubMed ID: 21414927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding effector selectivity in human posterior parietal cortex by combining information patterns and activation measures.
    Leoné FT; Heed T; Toni I; Medendorp WP
    J Neurosci; 2014 May; 34(21):7102-12. PubMed ID: 24849346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No effect of triple-pulse TMS medial to intraparietal sulcus on online correction for target perturbations during goal-directed hand and foot reaches.
    Marigold DS; Lajoie K; Heed T
    PLoS One; 2019; 14(10):e0223986. PubMed ID: 31626636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural simulation of actions: effector- versus action-specific motor maps within the human premotor and posterior parietal area?
    Lorey B; Naumann T; Pilgramm S; Petermann C; Bischoff M; Zentgraf K; Stark R; Vaitl D; Munzert J
    Hum Brain Mapp; 2014 Apr; 35(4):1212-25. PubMed ID: 23427116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the parietal cortex to increased efficiency of planning-based action selection.
    Randerath J; Valyear KF; Philip BA; Frey SH
    Neuropsychologia; 2017 Oct; 105():135-143. PubMed ID: 28438707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posterior parietal cortex activity reflects the significance of others' actions during natural viewing.
    Salmi J; Glerean E; Jääskeläinen IP; Lahnakoski JM; Kettunen J; Lampinen J; Tikka P; Sams M
    Hum Brain Mapp; 2014 Sep; 35(9):4767-76. PubMed ID: 24706557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct contributions of human posterior parietal and dorsal premotor cortex to reach trajectory planning.
    Pilacinski A; Lindner A
    Sci Rep; 2019 Feb; 9(1):1962. PubMed ID: 30760821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parieto-frontal gradients and domains underlying eye and hand operations in the action space.
    Battaglia-Mayer A; Babicola L; Satta E
    Neuroscience; 2016 Oct; 334():76-92. PubMed ID: 27421226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions.
    Vesia M; Bolton DA; Mochizuki G; Staines WR
    Neuropsychologia; 2013 Feb; 51(3):410-7. PubMed ID: 23206539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. rTMS-induced virtual lesion of the posterior parietal cortex (PPC) alters the control of reflexive shifts of social attention triggered by pointing hands.
    Porciello G; Crostella F; Liuzza MT; Valentini E; Aglioti SM
    Neuropsychologia; 2014 Jul; 59():148-56. PubMed ID: 24813151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal evolution and strength of neural activity in parietal cortex during eye and hand movements.
    Battaglia-Mayer A; Mascaro M; Caminiti R
    Cereb Cortex; 2007 Jun; 17(6):1350-63. PubMed ID: 16920885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing.
    Filimon F
    Neuroscientist; 2010 Aug; 16(4):388-407. PubMed ID: 20817917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human posterior parietal cortex mediates hand-specific planning.
    Valyear KF; Frey SH
    Neuroimage; 2015 Jul; 114():226-38. PubMed ID: 25842294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of target and effector information in human posterior parietal cortex for the planning of action.
    Medendorp WP; Goltz HC; Crawford JD; Vilis T
    J Neurophysiol; 2005 Feb; 93(2):954-62. PubMed ID: 15356184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasping with the Press of a Button: Grasp-selective Responses in the Human Anterior Intraparietal Sulcus Depend on Nonarbitrary Causal Relationships between Hand Movements and End-effector Actions.
    Frey SH; Hansen M; Marchal N
    J Cogn Neurosci; 2015 Jun; 27(6):1146-60. PubMed ID: 25436672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study.
    Ferri S; Rizzolatti G; Orban GA
    Hum Brain Mapp; 2015 Oct; 36(10):3845-66. PubMed ID: 26129732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and effector processing in the human parietofrontal network for reaches and saccades.
    Beurze SM; de Lange FP; Toni I; Medendorp WP
    J Neurophysiol; 2009 Jun; 101(6):3053-62. PubMed ID: 19321636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex.
    Konen CS; Kastner S
    J Neurosci; 2008 Aug; 28(33):8361-75. PubMed ID: 18701699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas.
    Gallivan JP; McLean DA; Flanagan JR; Culham JC
    J Neurosci; 2013 Jan; 33(5):1991-2008. PubMed ID: 23365237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.