These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 27466438)
1. In vitro response of macrophages to ceramic scaffolds used for bone regeneration. Graney PL; Roohani-Esfahani SI; Zreiqat H; Spiller KL J R Soc Interface; 2016 Jul; 13(120):. PubMed ID: 27466438 [TBL] [Abstract][Full Text] [Related]
2. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration. Lu Z; Wang G; Roohani-Esfahani I; Dunstan CR; Zreiqat H Tissue Eng Part A; 2014 Mar; 20(5-6):992-1002. PubMed ID: 24195838 [TBL] [Abstract][Full Text] [Related]
3. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051 [TBL] [Abstract][Full Text] [Related]
4. Unique microstructural design of ceramic scaffolds for bone regeneration under load. Roohani-Esfahani SI; Dunstan CR; Li JJ; Lu Z; Davies B; Pearce S; Field J; Williams R; Zreiqat H Acta Biomater; 2013 Jun; 9(6):7014-24. PubMed ID: 23467040 [TBL] [Abstract][Full Text] [Related]
5. Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair. Wang G; Roohani-Esfahani SI; Zhang W; Lv K; Yang G; Ding X; Zou D; Cui D; Zreiqat H; Jiang X Sci Rep; 2017 Jan; 7():41135. PubMed ID: 28106165 [TBL] [Abstract][Full Text] [Related]
6. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Roohani-Esfahani SI; Dunstan CR; Davies B; Pearce S; Williams R; Zreiqat H Acta Biomater; 2012 Nov; 8(11):4162-72. PubMed ID: 22842031 [TBL] [Abstract][Full Text] [Related]
7. Baghdadite Ceramics Prevent Senescence in Human Osteoblasts and Promote Bone Regeneration in Aged Rats. Lu Z; Zhang W; No YJ; Lu Y; Mirkhalaf Valashani SM; Rollet P; Jiang L; Ramaswamy Y; Dunstan CR; Jiang X; Zreiqat H ACS Biomater Sci Eng; 2020 Dec; 6(12):6874-6885. PubMed ID: 33320606 [TBL] [Abstract][Full Text] [Related]
8. Response of human macrophages to wound matrices in vitro. Witherel CE; Graney PL; Freytes DO; Weingarten MS; Spiller KL Wound Repair Regen; 2016 May; 24(3):514-24. PubMed ID: 26874797 [TBL] [Abstract][Full Text] [Related]
9. Characterizing the Macrophage Response to Immunomodulatory Biomaterials Through Gene Set Analyses. Blatt SE; Lurier EB; Risser GE; Spiller KL Tissue Eng Part C Methods; 2020 Mar; 26(3):156-169. PubMed ID: 32070241 [TBL] [Abstract][Full Text] [Related]
10. Strontium released bi-lineage scaffolds with immunomodulatory properties induce a pro-regenerative environment for osteochondral regeneration. Wang C; Chen B; Wang W; Zhang X; Hu T; He Y; Lin K; Liu X Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109833. PubMed ID: 31349499 [TBL] [Abstract][Full Text] [Related]
11. Biological evaluation of porous nanocomposite scaffolds based on strontium substituted β-TCP and bioactive glass: An in vitro and in vivo study. Kazemi M; Dehghan MM; Azami M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110071. PubMed ID: 31546377 [TBL] [Abstract][Full Text] [Related]
12. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
13. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Lin K; Xia L; Li H; Jiang X; Pan H; Xu Y; Lu WW; Zhang Z; Chang J Biomaterials; 2013 Dec; 34(38):10028-42. PubMed ID: 24095251 [TBL] [Abstract][Full Text] [Related]
14. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. Frasca S; Norol F; Le Visage C; Collombet JM; Letourneur D; Holy X; Sari Ali E J Mater Sci Mater Med; 2017 Feb; 28(2):35. PubMed ID: 28110459 [TBL] [Abstract][Full Text] [Related]
15. In vitro evaluation of bioactive strontium-based ceramic with rabbit adipose-derived stem cells for bone tissue regeneration. Mohan BG; Suresh Babu S; Varma HK; John A J Mater Sci Mater Med; 2013 Dec; 24(12):2831-44. PubMed ID: 23990148 [TBL] [Abstract][Full Text] [Related]
16. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345 [TBL] [Abstract][Full Text] [Related]
17. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Chen Z; Mao X; Tan L; Friis T; Wu C; Crawford R; Xiao Y Biomaterials; 2014 Oct; 35(30):8553-65. PubMed ID: 25017094 [TBL] [Abstract][Full Text] [Related]
18. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related]
19. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects. Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612 [TBL] [Abstract][Full Text] [Related]
20. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]