These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27466627)

  • 1. Motif comparison based on similarity of binding affinity profiles.
    Lambert SA; Albu M; Hughes TR; Najafabadi HS
    Bioinformatics; 2016 Nov; 32(22):3504-3506. PubMed ID: 27466627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE.
    Najafabadi HS; Albu M; Hughes TR
    Bioinformatics; 2015 Sep; 31(17):2879-81. PubMed ID: 25953800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RTFBSDB: an integrated framework for transcription factor binding site analysis.
    Wang Z; Martins AL; Danko CG
    Bioinformatics; 2016 Oct; 32(19):3024-6. PubMed ID: 27288497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies.
    Mahony S; Auron PE; Benos PV
    PLoS Comput Biol; 2007 Mar; 3(3):e61. PubMed ID: 17397256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets for combinatory motif discovery.
    Li Y; Ni P; Zhang S; Li G; Su Z
    Bioinformatics; 2019 Nov; 35(22):4632-4639. PubMed ID: 31070745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding de novo methylated DNA motifs.
    Ngo V; Wang M; Wang W
    Bioinformatics; 2019 Sep; 35(18):3287-3293. PubMed ID: 30726880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ChIP-Seq Data and a Reference Motif Set for Human KRAB C2H2 Zinc Finger Proteins.
    Barazandeh M; Lambert SA; Albu M; Hughes TR
    G3 (Bethesda); 2018 Jan; 8(1):219-229. PubMed ID: 29146583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAGGIE: leveraging genetic variation to identify DNA sequence motifs mediating transcription factor binding and function.
    Shen Z; Hoeksema MA; Ouyang Z; Benner C; Glass CK
    Bioinformatics; 2020 Jul; 36(Suppl_1):i84-i92. PubMed ID: 32657363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data.
    Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B
    BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data.
    Jankowski A; Tiuryn J; Prabhakar S
    Bioinformatics; 2016 Aug; 32(16):2419-26. PubMed ID: 27153645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo motif discovery facilitates identification of interactions between transcription factors in Saccharomyces cerevisiae.
    Chen MJ; Chou LC; Hsieh TT; Lee DD; Liu KW; Yu CY; Oyang YJ; Tsai HK; Chen CY
    Bioinformatics; 2012 Mar; 28(5):701-8. PubMed ID: 22238267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification.
    Borozan I; Watt S; Ferretti V
    Bioinformatics; 2015 May; 31(9):1396-404. PubMed ID: 25573913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.
    Lu R; Mucaki EJ; Rogan PK
    Nucleic Acids Res; 2017 Mar; 45(5):e27. PubMed ID: 27899659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep and wide digging for binding motifs in ChIP-Seq data.
    Kulakovskiy IV; Boeva VA; Favorov AV; Makeev VJ
    Bioinformatics; 2010 Oct; 26(20):2622-3. PubMed ID: 20736340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarity of position frequency matrices for transcription factor binding sites.
    Schones DE; Sumazin P; Zhang MQ
    Bioinformatics; 2005 Feb; 21(3):307-13. PubMed ID: 15319260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.
    Ozaki H; Iwasaki W
    Comput Biol Chem; 2016 Aug; 63():62-72. PubMed ID: 26971251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.