These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 27466706)

  • 1. Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'.
    Petrenko VA; Gillespie JW
    Expert Opin Drug Deliv; 2017 Mar; 14(3):373-384. PubMed ID: 27466706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of phage display: from bioactive peptides to bioselective nanomaterials.
    Petrenko V
    Expert Opin Drug Deliv; 2008 Aug; 5(8):825-36. PubMed ID: 18712993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous self-navigating drug-delivery vehicles: from science fiction to reality.
    Petrenko VA
    Ther Deliv; 2017 Dec; 8(12):1063-1075. PubMed ID: 29125066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phage protein-targeted cancer nanomedicines.
    Petrenko VA; Jayanna PK
    FEBS Lett; 2014 Jan; 588(2):341-9. PubMed ID: 24269681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landscape Phage: Evolution from Phage Display to Nanobiotechnology.
    Petrenko VA
    Viruses; 2018 Jun; 10(6):. PubMed ID: 29880747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial Avidity Selection of Mosaic Landscape Phages Targeted at Breast Cancer Cells-An Alternative Mechanism of Directed Molecular Evolution.
    Petrenko VA; Gillespie JW; Xu H; O'Dell T; De Plano LM
    Viruses; 2019 Aug; 11(9):. PubMed ID: 31454976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine.
    Sunderland KS; Yang M; Mao C
    Angew Chem Int Ed Engl; 2017 Feb; 56(8):1964-1992. PubMed ID: 27491926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Killing cancer cells by targeted drug-carrying phage nanomedicines.
    Bar H; Yacoby I; Benhar I
    BMC Biotechnol; 2008 Apr; 8():37. PubMed ID: 18387177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles.
    Ju Z; Sun W
    Drug Deliv; 2017 Nov; 24(1):1898-1908. PubMed ID: 29191048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines.
    Bedi D; Gillespie JW; Petrenko VA
    Protein Eng Des Sel; 2014 Jul; 27(7):235-43. PubMed ID: 24899628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications.
    Ranganathan R; Madanmohan S; Kesavan A; Baskar G; Krishnamoorthy YR; Santosham R; Ponraju D; Rayala SK; Venkatraman G
    Int J Nanomedicine; 2012; 7():1043-60. PubMed ID: 22403487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension.
    Rahman M; Ahmad MZ; Kazmi I; Akhter S; Afzal M; Gupta G; Sinha VR
    Curr Drug Discov Technol; 2012 Dec; 9(4):319-29. PubMed ID: 22725687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos.
    Karimi M; Mirshekari H; Moosavi Basri SM; Bahrami S; Moghoofei M; Hamblin MR
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt A):45-62. PubMed ID: 26994592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced tumor delivery and antitumor activity in vivo of liposomal doxorubicin modified with MCF-7-specific phage fusion protein.
    Wang T; Hartner WC; Gillespie JW; Praveen KP; Yang S; Mei LA; Petrenko VA; Torchilin VP
    Nanomedicine; 2014 Feb; 10(2):421-30. PubMed ID: 24028893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.
    Vaks L; Benhar I
    Methods Mol Biol; 2011; 726():187-206. PubMed ID: 21424451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface engineered multifunctional nano-systems for localised drug delivery against thyroid cancer: A review of current practices.
    Zhang Y; Tang N; Zhou H; Zhu Y
    Biomed Pharmacother; 2024 Jul; 176():116840. PubMed ID: 38820975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines.
    Wang H; Yang Y; Xu Y; Chen Y; Zhang W; Liu T; Chen G; Wang K
    J Nanobiotechnology; 2024 Jun; 22(1):365. PubMed ID: 38918839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines.
    Vaks L; Benhar I
    J Nanobiotechnology; 2011 Dec; 9():58. PubMed ID: 22185583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.
    Bar-Zeev M; Livney YD; Assaraf YG
    Drug Resist Updat; 2017 Mar; 31():15-30. PubMed ID: 28867241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy.
    Li XT; Peng SY; Feng SM; Bao TY; Li SZ; Li SY
    Small; 2024 Feb; 20(7):e2307111. PubMed ID: 37806755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.