These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27466849)

  • 1. Acquired Cystic Fibrosis Transmembrane Conductance Regulator Deficiency.
    Cho DY; Woodworth BA
    Adv Otorhinolaryngol; 2016; 79():78-85. PubMed ID: 27466849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resveratrol ameliorates abnormalities of fluid and electrolyte secretion in a hypoxia-Induced model of acquired CFTR deficiency.
    Woodworth BA
    Laryngoscope; 2015 Oct; 125 Suppl 7(0 7):S1-S13. PubMed ID: 25946147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.
    Haq IJ; Gray MA; Garnett JP; Ward C; Brodlie M
    Thorax; 2016 Mar; 71(3):284-7. PubMed ID: 26719229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of acquired mucociliary clearance defects using micro-optical coherence tomography.
    Tipirneni KE; Grayson JW; Zhang S; Cho DY; Skinner DF; Lim DJ; Mackey C; Tearney GJ; Rowe SM; Woodworth BA
    Int Forum Allergy Rhinol; 2017 Sep; 7(9):920-925. PubMed ID: 28658531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of early increased sialylation of airway mucins and defective mucociliary clearance in CFTR-deficient piglets.
    Caballero I; Ringot-Destrez B; Si-Tahar M; Barbry P; Guillon A; Lantier I; Berri M; Chevaleyre C; Fleurot I; Barc C; Ramphal R; Pons N; Paquet A; Lebrigand K; Baron C; Bähr A; Klymiuk N; Léonard R; Robbe-Masselot C
    J Cyst Fibros; 2021 Jan; 20(1):173-182. PubMed ID: 32978064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis.
    Antigny F; Norez C; Dannhoffer L; Bertrand J; Raveau D; Corbi P; Jayle C; Becq F; Vandebrouck C
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):83-90. PubMed ID: 20203293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [CFTR and transepithelial ionic transport abnormalities in cystic fibrosis].
    Becq F
    Arch Pediatr; 2003 Sep; 10 Suppl 2():325s-332s. PubMed ID: 14671929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of human bronchial epithelial cells: role of hydrocortisone in development of ion transport pathways involved in mucociliary clearance.
    Zaidman NA; Panoskaltsis-Mortari A; O'Grady SM
    Am J Physiol Cell Physiol; 2016 Aug; 311(2):C225-36. PubMed ID: 27306366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified Airway-Cystic Fibrosis.
    Cho DY; Grayson JW; Woodworth BA
    Otolaryngol Clin North Am; 2023 Feb; 56(1):125-136. PubMed ID: 36266104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron Homeostasis and Inflammatory Status in Mice Deficient for the Cystic Fibrosis Transmembrane Regulator.
    Deschemin JC; Allouche S; Brouillard F; Vaulont S
    PLoS One; 2015; 10(12):e0145685. PubMed ID: 26709821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deleterious impact of Pseudomonas aeruginosa on cystic fibrosis transmembrane conductance regulator function and rescue in airway epithelial cells.
    Trinh NT; Bilodeau C; Maillé É; Ruffin M; Quintal MC; Desrosiers MY; Rousseau S; Brochiero E
    Eur Respir J; 2015 Jun; 45(6):1590-602. PubMed ID: 25792634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion channels as targets to treat cystic fibrosis lung disease.
    Martin SL; Saint-Criq V; Hwang TC; Csanády L
    J Cyst Fibros; 2018 Mar; 17(2S):S22-S27. PubMed ID: 29102290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Ion Transport to Restore Airway Hydration in Cystic Fibrosis.
    Reihill JA; Douglas LEJ; Martin SL
    Genes (Basel); 2021 Mar; 12(3):. PubMed ID: 33810137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium.
    Oglesby IK; Chotirmall SH; McElvaney NG; Greene CM
    J Immunol; 2013 Apr; 190(7):3354-62. PubMed ID: 23436935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease.
    Fernandez Fernandez E; De Santi C; De Rose V; Greene CM
    Expert Rev Respir Med; 2018 Jun; 12(6):483-492. PubMed ID: 29750581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport.
    Li H; Salomon JJ; Sheppard DN; Mall MA; Galietta LJ
    Curr Opin Pharmacol; 2017 Jun; 34():91-97. PubMed ID: 29065356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine regulation of cystic fibrosis transmembrane conductance regulator through prostenoids in airway epithelia.
    Li Y; Wang W; Parker W; Clancy JP
    Am J Respir Cell Mol Biol; 2006 May; 34(5):600-8. PubMed ID: 16399952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cystic fibrosis transmembrane conductance regulator is expressed in mucin granules from Calu-3 and primary human airway epithelial cells.
    LeSimple P; Goepp J; Palmer ML; Fahrenkrug SC; O'Grady SM; Ferraro P; Robert R; Hanrahan JW
    Am J Respir Cell Mol Biol; 2013 Oct; 49(4):511-6. PubMed ID: 23742042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid movement across the surface epithelium of large airways.
    Chambers LA; Rollins BM; Tarran R
    Respir Physiol Neurobiol; 2007 Dec; 159(3):256-70. PubMed ID: 17692578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Physiopathology of cystic fibrosis lung disease].
    Chinet T
    Rev Mal Respir; 1999 Jun; 16(3):339-45. PubMed ID: 10472642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.