These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27467013)

  • 1. Nanostructure of Poly(N-isopropylacrylamide) Brush at the Air/Water Interface and Its Responsivity to Temperature and Salt.
    Matsuoka H; Uda K
    Langmuir; 2016 Aug; 32(33):8383-91. PubMed ID: 27467013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructure and salt effect of zwitterionic carboxybetaine brush at the air/water interface.
    Matsuoka H; Yamakawa Y; Ghosh A; Saruwatari Y
    Langmuir; 2015 May; 31(17):4827-36. PubMed ID: 25867972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt effect on the nanostructure of strong polyelectrolyte brushes in amphiphilic diblock copolymer monolayers on the water surface.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2007 Jun; 23(13):7065-71. PubMed ID: 17511483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructure and transition of a strong polyelectrolyte brush at the air/water interface.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2007 Jan; 23(1):20-4. PubMed ID: 17190479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of salt concentration on the nanostructure of weak polyacid brush in the amphiphilic polymer monolayer at the air/water interface.
    Mouri E; Kaewsaiha P; Matsumoto K; Matsuoka H; Torikai N
    Langmuir; 2004 Nov; 20(24):10604-11. PubMed ID: 15544391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructure of a "carpet"-like dense layer/polyelectrolyte brush layer in a block copolymer monolayer at the air-water interface.
    Mouri E; Matsumoto K; Matsuoka H; Torikai N
    Langmuir; 2005 Mar; 21(5):1840-7. PubMed ID: 15723480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructure of a poly(acrylic acid) brush and its transition in the amphiphilic diblock copolymer monolayer on the water surface.
    Matsuoka H; Suetomi Y; Kaewsaiha P; Matsumoto K
    Langmuir; 2009 Dec; 25(24):13752-62. PubMed ID: 19583229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced Water Density in a Poly(ethylene oxide) Brush.
    Lee H; Kim DH; Park HW; Mahynski NA; Kim K; Meron M; Lin B; Won YY
    J Phys Chem Lett; 2012 Jun; 3(12):1589-95. PubMed ID: 26285713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and nanostructure of strong polyelectrolyte brushes in amphiphilic diblock copolymer monolayers on a water surface.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2004 Aug; 20(16):6754-61. PubMed ID: 15274582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical brush density for the transition between carpet-only and carpet/brush double-layered structures.
    Matsuoka H; Furuya Y; Kaewsaiha P; Mouri E; Matsumoto K
    Langmuir; 2005 Jul; 21(15):6842-5. PubMed ID: 16008395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ionic strength and salt identity on poly(N-isopropylacrylamide) brush modified colloidal silica particles.
    Humphreys BA; Wanless EJ; Webber GB
    J Colloid Interface Sci; 2018 Apr; 516():153-161. PubMed ID: 29367066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninteracting versus interacting poly(N-isopropylacrylamide)-surfactant mixtures at the air-water interface.
    Jean B; Lee LT
    J Phys Chem B; 2005 Mar; 109(11):5162-7. PubMed ID: 16863180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water is a poor solvent for densely grafted poly(ethylene oxide) chains: a conclusion drawn from a self-consistent field theory-based analysis of neutron reflectivity and surface pressure-area isotherm data.
    Lee H; Kim DH; Witte KN; Ohn K; Choi J; Akgun B; Satija S; Won YY
    J Phys Chem B; 2012 Jun; 116(24):7367-78. PubMed ID: 22616550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophilic chain length dependence of the ionic amphiphilic polymer monolayer structure at the air/water interface.
    Mouri E; Furuya Y; Matsumoto K; Matsuoka H
    Langmuir; 2004 Sep; 20(19):8062-7. PubMed ID: 15350073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas.
    Luo S; Xu J; Zhu Z; Wu C; Liu S
    J Phys Chem B; 2006 May; 110(18):9132-9. PubMed ID: 16671725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thickness Changes in Temperature-Responsive Poly(
    Liu Y; Sakurai K
    ACS Omega; 2019 Jul; 4(7):12194-12203. PubMed ID: 31460334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes of poly(N-isopropylacrylamide) chains at air/water interface: effects of temperature, compression rate, and packing density.
    Liu G; Yang S; Zhang G
    J Phys Chem B; 2007 Apr; 111(14):3633-9. PubMed ID: 17388540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anion Specificity Effects on the Interfacial Aggregation Behavior of Poly(lauryl acrylate)-
    You K; Wen G; Skandalis A; Pispas S; Yang S
    Langmuir; 2019 Jul; 35(30):9904-9911. PubMed ID: 31282165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two phase transitions of poly(N-isopropylacrylamide) brushes bound to gold nanoparticles.
    Shan J; Chen J; Nuopponen M; Tenhu H
    Langmuir; 2004 May; 20(11):4671-6. PubMed ID: 15969180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of the phase transition for a poly(N-isopropylacryamide) layer grafted onto a solid surface by AFM and QCM-D.
    Ishida N; Biggs S
    Langmuir; 2007 Oct; 23(22):11083-8. PubMed ID: 17902714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.