BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

897 related articles for article (PubMed ID: 27467730)

  • 21. Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions.
    Kamangar S; Badruddin IA; Govindaraju K; Nik-Ghazali N; Badarudin A; Viswanathan GN; Ahmed NJS; Khan TMY
    Med Biol Eng Comput; 2017 Aug; 55(8):1451-1461. PubMed ID: 28004229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of flow distribution strategy for the quantification of pressure- and wall shear stress-derived parameters in the coronary artery: A CTA-based computational fluid dynamics analysis.
    Shi Y; Zheng J; Zhang Y; Sun Q; Shen J; Gao Y; Sun J; Yang N; Zhou X; Li S; Weir-McCall JR; Xia P; Teng Z
    J Biomech; 2023 Dec; 161():111857. PubMed ID: 37939424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fractional flow reserve-based 4D hemodynamic simulation of time-resolved blood flow in left anterior descending coronary artery.
    Zhao Y; Ping J; Yu X; Wu R; Sun C; Zhang M
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():164-169. PubMed ID: 31525657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease.
    Timmins LH; Molony DS; Eshtehardi P; McDaniel MC; Oshinski JN; Giddens DP; Samady H
    J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28148771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
    Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study.
    Wu J; Liu G; Huang W; Ghista DN; Wong KK
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1835-45. PubMed ID: 25398021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound.
    Balocco S; Gatta C; Alberti M; Carrillo X; Rigla J; Radeva P
    Med Phys; 2012 Dec; 39(12):7430-45. PubMed ID: 23231293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease.
    Samady H; Eshtehardi P; McDaniel MC; Suo J; Dhawan SS; Maynard C; Timmins LH; Quyyumi AA; Giddens DP
    Circulation; 2011 Aug; 124(7):779-88. PubMed ID: 21788584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation.
    Martin DM; Murphy EA; Boyle FJ
    Med Eng Phys; 2014 Aug; 36(8):1047-56. PubMed ID: 24953569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges.
    Bernhard S; Möhlenkamp S; Tilgner A
    Biomed Eng Online; 2006 Jun; 5():42. PubMed ID: 16790065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion.
    Ramaswamy SD; Vigmostad SC; Wahle A; Lai YG; Olszewski ME; Braddy KC; Brennan TM; Rossen JD; Sonka M; Chandran KB
    Ann Biomed Eng; 2004 Dec; 32(12):1628-41. PubMed ID: 15675676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High shear stress on the coronary arterial wall is related to computed tomography-derived high-risk plaque: a three-dimensional computed tomography and color-coded tissue-characterizing intravascular ultrasonography study.
    Murata N; Hiro T; Takayama T; Migita S; Morikawa T; Tamaki T; Mineki T; Kojima K; Akutsu N; Sudo M; Kitano D; Fukamachi D; Hirayama A; Okumura Y
    Heart Vessels; 2019 Sep; 34(9):1429-1439. PubMed ID: 30976923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions.
    Kamangar S; Badruddin IA; Badarudin A; Nik-Ghazali N; Govindaraju K; Salman Ahmed NJ; Yunus Khan TM
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):365-372. PubMed ID: 27612619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Assessment of Coronary Plaque Progression With Advanced Intravascular Imaging, Physiological Measures, and Wall Shear Stress: A Pilot Double-Blinded Randomized Controlled Clinical Trial of Nebivolol Versus Atenolol in Nonobstructive Coronary Artery Disease.
    Hung OY; Molony D; Corban MT; Rasoul-Arzrumly E; Maynard C; Eshtehardi P; Dhawan S; Timmins LH; Piccinelli M; Ahn SG; Gogas BD; McDaniel MC; Quyyumi AA; Giddens DP; Samady H
    J Am Heart Assoc; 2016 Jan; 5(1):. PubMed ID: 26811165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying the effect of side branches in endothelial shear stress estimates.
    Giannopoulos AA; Chatzizisis YS; Maurovich-Horvat P; Antoniadis AP; Hoffmann U; Steigner ML; Rybicki FJ; Mitsouras D
    Atherosclerosis; 2016 Aug; 251():213-218. PubMed ID: 27372207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel non-dimensional approach to comparison of wall shear stress distributions in coronary arteries of different groups of patients.
    Wellnhofer E; Goubergrits L; Kertzscher U; Affeld K; Fleck E
    Atherosclerosis; 2009 Feb; 202(2):483-90. PubMed ID: 18617176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries.
    Rikhtegar F; Knight JA; Olgac U; Saur SC; Poulikakos D; Marshall W; Cattin PC; Alkadhi H; Kurtcuoglu V
    Atherosclerosis; 2012 Apr; 221(2):432-7. PubMed ID: 22317967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of plaque morphological characteristics on the post-stenotic flow in left main coronary artery bifurcation.
    Hossain T; Anan N; Arafat MT
    Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34425569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemodynamics and wall shear metrics in a pulmonary autograft: Comparing a fluid-structure interaction and computational fluid dynamics approach.
    Balasubramanya A; Maes L; Rega F; Mazzi V; Morbiducci U; Famaey N; Degroote J; Segers P
    Comput Biol Med; 2024 Jun; 176():108604. PubMed ID: 38761502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.