BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27468465)

  • 1. Salicylic acid induces differential antioxidant response in spring maize under high temperature stress.
    Khanna P; Kaur K; Gupta AK
    Indian J Exp Biol; 2016 Jun; 54(6):386-93. PubMed ID: 27468465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid.
    Wang H; Feng T; Peng X; Yan M; Tang X
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1354-62. PubMed ID: 19375798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging.
    Chugh V; Kaur N; Gupta AK
    Indian J Biochem Biophys; 2011 Oct; 48(5):346-52. PubMed ID: 22165294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings.
    Li ZG
    Plant Signal Behav; 2015; 10(9):e1051278. PubMed ID: 26337076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought.
    Chugh V; Kaur N; Gupta AK
    Indian J Biochem Biophys; 2011 Feb; 48(1):47-53. PubMed ID: 21469602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress.
    Hasanuzzaman M; Nahar K; Alam MM; Fujita M
    Biol Trace Elem Res; 2014 Dec; 161(3):297-307. PubMed ID: 25249068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).
    Gondor OK; Pál M; Darkó É; Janda T; Szalai G
    PLoS One; 2016; 11(8):e0160157. PubMed ID: 27490102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).
    Xu X; Liu C; Zhao X; Li R; Deng W
    Bull Environ Contam Toxicol; 2014 Nov; 93(5):618-24. PubMed ID: 25154813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimethoate modifies enhanced UV-B effects on growth, photosynthesis and oxidative stress in mung bean (Vigna radiata L.) seedlings: implication of salicylic acid.
    Singh VP; Kumar J; Singh S; Prasad SM
    Pestic Biochem Physiol; 2014 Nov; 116():13-23. PubMed ID: 25454516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage.
    Chugh V; Kaur N; Grewal MS; Gupta AK
    Indian J Biochem Biophys; 2013 Apr; 50(2):150-8. PubMed ID: 23720889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Androsterone-induced molecular and physiological changes in maize seedlings in response to chilling stress.
    Erdal S
    Plant Physiol Biochem; 2012 Aug; 57():1-7. PubMed ID: 22634365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings.
    Li ZG; Xie LR; Li XJ
    J Plant Physiol; 2015 Apr; 177():121-127. PubMed ID: 25727780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity.
    Torun H
    Physiol Plant; 2019 Feb; 165(2):169-182. PubMed ID: 29984429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress.
    Moravcová Š; Tůma J; Dučaiová ZK; Waligórski P; Kula M; Saja D; Słomka A; Bąba W; Libik-Konieczny M
    Plant Physiol Biochem; 2018 Jan; 122():19-30. PubMed ID: 29172102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress.
    Kohli SK; Handa N; Sharma A; Gautam V; Arora S; Bhardwaj R; Wijaya L; Alyemeni MN; Ahmad P
    Environ Sci Pollut Res Int; 2018 May; 25(15):15159-15173. PubMed ID: 29560590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants.
    Islam F; Yasmeen T; Arif MS; Riaz M; Shahzad SM; Imran Q; Ali I
    Plant Physiol Biochem; 2016 Nov; 108():456-467. PubMed ID: 27575042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alleviation of high salt toxicity-induced oxidative damage by salicylic acid pretreatment in two wheat cultivars.
    Mutlu S; Atici Ö
    Toxicol Ind Health; 2013 Feb; 29(1):89-96. PubMed ID: 22722774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots.
    Esim N; Tiryaki D; Karadagoglu O; Atici O
    Toxicol Ind Health; 2013 Oct; 29(9):800-5. PubMed ID: 22491723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings.
    Li G; Peng X; Wei L; Kang G
    Gene; 2013 Oct; 529(2):321-5. PubMed ID: 23948081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress.
    Bharti A; Garg N
    Ecotoxicol Environ Saf; 2019 Aug; 178():66-78. PubMed ID: 30999182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.