BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 27468917)

  • 1. Selective Ablation of GIRK Channels in Dopamine Neurons Alters Behavioral Effects of Cocaine in Mice.
    McCall NM; Kotecki L; Dominguez-Lopez S; Marron Fernandez de Velasco E; Carlblom N; Sharpe AL; Beckstead MJ; Wickman K
    Neuropsychopharmacology; 2017 Feb; 42(3):707-715. PubMed ID: 27468917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GIRK Channel Activity in Dopamine Neurons of the Ventral Tegmental Area Bidirectionally Regulates Behavioral Sensitivity to Cocaine.
    McCall NM; Marron Fernandez de Velasco E; Wickman K
    J Neurosci; 2019 May; 39(19):3600-3610. PubMed ID: 30837265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tipepidine activates VTA dopamine neuron via inhibiting dopamine D₂ receptor-mediated inward rectifying K⁺ current.
    Hamasaki R; Shirasaki T; Soeda F; Takahama K
    Neuroscience; 2013 Nov; 252():24-34. PubMed ID: 23896570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Role for the GIRK3 Subunit in Methamphetamine-Induced Attenuation of GABAB Receptor-Activated GIRK Currents in VTA Dopamine Neurons.
    Munoz MB; Padgett CL; Rifkin R; Terunuma M; Wickman K; Contet C; Moss SJ; Slesinger PA
    J Neurosci; 2016 Mar; 36(11):3106-14. PubMed ID: 26985023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute cocaine exposure weakens GABA(B) receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurons of the ventral tegmental area.
    Arora D; Hearing M; Haluk DM; Mirkovic K; Fajardo-Serrano A; Wessendorf MW; Watanabe M; Luján R; Wickman K
    J Neurosci; 2011 Aug; 31(34):12251-7. PubMed ID: 21865468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization.
    Rifkin RA; Huyghe D; Li X; Parakala M; Aisenberg E; Moss SJ; Slesinger PA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9479-E9488. PubMed ID: 30228121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Impact of Inhibitory G-Protein Signaling Pathways in Ventral Tegmental Area Dopamine Neurons on Behavioral Sensitivity to Cocaine and Morphine.
    DeBaker MC; Marron Fernandez de Velasco E; McCall NM; Lee AM; Wickman K
    eNeuro; 2021; 8(2):. PubMed ID: 33707203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Acute and Persistent Excitation of Prelimbic Pyramidal Neurons on Motor Activity and Trace Fear Learning.
    Rose TR; Marron Fernandez de Velasco E; Vo BN; Tipps ME; Wickman K
    J Neurosci; 2021 Feb; 41(5):960-971. PubMed ID: 33402420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner.
    Kotecki L; Hearing M; McCall NM; Marron Fernandez de Velasco E; Pravetoni M; Arora D; Victoria NC; Munoz MB; Xia Z; Slesinger PA; Weaver CD; Wickman K
    J Neurosci; 2015 May; 35(18):7131-42. PubMed ID: 25948263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorting nexin 27 regulation of G protein-gated inwardly rectifying K⁺ channels attenuates in vivo cocaine response.
    Munoz MB; Slesinger PA
    Neuron; 2014 May; 82(3):659-69. PubMed ID: 24811384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine inhibits GABA(A) currents in ventral tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-rectifying potassium channels.
    Michaeli A; Yaka R
    Neuroscience; 2010 Feb; 165(4):1159-69. PubMed ID: 19944748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropeptide-Y alters VTA dopamine neuron activity through both pre- and postsynaptic mechanisms.
    West KS; Roseberry AG
    J Neurophysiol; 2017 Jul; 118(1):625-633. PubMed ID: 28469002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.
    Dragicevic E; Poetschke C; Duda J; Schlaudraff F; Lammel S; Schiemann J; Fauler M; Hetzel A; Watanabe M; Lujan R; Malenka RC; Striessnig J; Liss B
    Brain; 2014 Aug; 137(Pt 8):2287-302. PubMed ID: 24934288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cocaine disinhibits dopamine neurons in the ventral tegmental area via use-dependent blockade of GABA neuron voltage-sensitive sodium channels.
    Steffensen SC; Taylor SR; Horton ML; Barber EN; Lyle LT; Stobbs SH; Allison DW
    Eur J Neurosci; 2008 Nov; 28(10):2028-40. PubMed ID: 19046384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Firing modes of dopamine neurons drive bidirectional GIRK channel plasticity.
    Lalive AL; Munoz MB; Bellone C; Slesinger PA; Lüscher C; Tan KR
    J Neurosci; 2014 Apr; 34(15):5107-14. PubMed ID: 24719090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G
    Philippart F; Khaliq ZM
    Elife; 2018 Dec; 7():. PubMed ID: 30556810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticosterone Attenuates Reward-Seeking Behavior and Increases Anxiety via D2 Receptor Signaling in Ventral Tegmental Area Dopamine Neurons.
    Peng B; Xu Q; Liu J; Guo S; Borgland SL; Liu S
    J Neurosci; 2021 Feb; 41(7):1566-1581. PubMed ID: 33372063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methamphetamine self-administration in mice decreases GIRK channel-mediated currents in midbrain dopamine neurons.
    Sharpe AL; Varela E; Bettinger L; Beckstead MJ
    Int J Neuropsychopharmacol; 2014 Oct; 18(5):. PubMed ID: 25522412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor- and Reward-Enhancing Effects of Cocaine Are Differentially Regulated by Chemogenetic Stimulation of Gi-Signaling in Dopaminergic Neurons.
    Runegaard AH; Sørensen AT; Fitzpatrick CM; Jørgensen SH; Petersen AV; Hansen NW; Weikop P; Andreasen JT; Mikkelsen JD; Perrier JF; Woldbye D; Rickhag M; Wortwein G; Gether U
    eNeuro; 2018; 5(3):. PubMed ID: 29938215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of GIRK2 subunit containing GIRK channels of neurons expressing dopamine transporter decrease immobility time on forced swimming in mice.
    Honda I; Araki K; Honda S; Soeda F; Shin MC; Misumi S; Yamamura KI; Takahama K
    Neurosci Lett; 2018 Feb; 665():140-146. PubMed ID: 29180115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.