BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

634 related articles for article (PubMed ID: 27468952)

  • 21. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium-sulfur batteries.
    Wang B; Wen Y; Ye D; Yu H; Sun B; Wang G; Hulicova-Jurcakova D; Wang L
    Chemistry; 2014 Apr; 20(18):5224-30. PubMed ID: 24692070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uniform Polypyrrole Layer-Coated Sulfur/Graphene Aerogel via the Vapor-Phase Deposition Technique as the Cathode Material for Li-S Batteries.
    Li F; Kaiser MR; Ma J; Hou Y; Zhou T; Han Z; Lai W; Chen J; Guo Z; Liu H; Wang J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5958-5967. PubMed ID: 31922398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoconfined Oxidation Synthesis of N-Doped Carbon Hollow Spheres and MnO
    Shen J; Liu J; Liu Z; Hu R; Liu J; Zhu M
    Chemistry; 2018 Mar; 24(18):4573-4582. PubMed ID: 29181856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafine TiO2 Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium-Sulfur Battery.
    Liang G; Wu J; Qin X; Liu M; Li Q; He YB; Kim JK; Li B; Kang F
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23105-13. PubMed ID: 27508357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rutile TiO
    Sun Q; Chen K; Liu Y; Li Y; Wei M
    Chemistry; 2017 Nov; 23(64):16312-16318. PubMed ID: 28929599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual Core-Shell-Structured S@C@MnO
    Ni L; Zhao G; Yang G; Niu G; Chen M; Diao G
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34793-34803. PubMed ID: 28817251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries.
    Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H
    Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.
    Liang Z; Zheng G; Li W; Seh ZW; Yao H; Yan K; Kong D; Cui Y
    ACS Nano; 2014 May; 8(5):5249-56. PubMed ID: 24766547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A waste newspaper/multi-walled carbon nanotube/TiO
    Yan C; Zhou X; Wei Y; He S
    Dalton Trans; 2020 Aug; 49(33):11675-11681. PubMed ID: 32785354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-step synthesis of a sulfur-impregnated graphene cathode for lithium-sulfur batteries.
    Park MS; Yu JS; Kim KJ; Jeong G; Kim JH; Jo YN; Hwang U; Kang S; Woo T; Kim YJ
    Phys Chem Chem Phys; 2012 May; 14(19):6796-804. PubMed ID: 22481469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium-Sulfur Batteries.
    Lai C; Wu Z; Gu X; Wang C; Xi K; Kumar RV; Zhang S
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23885-92. PubMed ID: 26470838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TiO
    Liu R; Liu Z; Liu W; Liu Y; Lin X; Li Y; Li P; Huang Z; Feng X; Yu L; Wang D; Ma Y; Huang W
    Small; 2019 Jul; 15(29):e1804533. PubMed ID: 30663258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polycarboxylate Functionalized Graphene/S Composite Cathodes and Modified Cathode-Facing Side Coated Separators for Advanced Lithium-Sulfur Batteries.
    Kiai MS; Eroglu O; Kizil H
    Nanoscale Res Lett; 2019 Aug; 14(1):265. PubMed ID: 31385055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green and facile fabrication of porous titanium dioxide as efficient sulfur host for advanced lithium-sulfur batteries: An air oxidation strategy.
    Zhang X; Yuan W; Yang Y; Yang S; Wang C; Yuan Y; Wu Y; Kang W; Tang Y
    J Colloid Interface Sci; 2021 Feb; 583():157-165. PubMed ID: 33002688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of Double-Shell SnO
    Cao B; Li D; Hou B; Mo Y; Yin L; Chen Y
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27795-27802. PubMed ID: 27673335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries.
    Hong XJ; Tan TX; Guo YK; Tang XY; Wang JY; Qin W; Cai YP
    Nanoscale; 2018 Feb; 10(6):2774-2780. PubMed ID: 29323375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries.
    Li Z; Yuan L; Yi Z; Liu Y; Xin Y; Zhang Z; Huang Y
    Nanoscale; 2014; 6(3):1653-60. PubMed ID: 24336973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anchoring Nitrogen-Doped TiO
    Liu XW; Yang ZZ; Pan FS; Gu L; Yu Y
    Chemistry; 2017 Feb; 23(8):1757-1762. PubMed ID: 27922730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon-Coated Yttria Hollow Spheres as Both Sulfur Immobilizer and Catalyst of Polysulfides Conversion in Lithium-Sulfur Batteries.
    Zeng P; Chen M; Luo J; Liu H; Li Y; Peng J; Li J; Yu H; Luo Z; Shu H; Miao C; Chen G; Wang X
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42104-42113. PubMed ID: 31657893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.
    Ghosh A; Manjunatha R; Kumar R; Mitra S
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33775-33785. PubMed ID: 27960357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.