These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
643 related articles for article (PubMed ID: 27469041)
61. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. Vítková M; Rákosová S; Michálková Z; Komárek M J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579 [TBL] [Abstract][Full Text] [Related]
62. Green Synthesis of Resin Supported Nanoiron and Evaluation of Efficiency for the Remediation of Cr(VI) Contaminated Groundwater by Batch Tests. Toli A; Varouxaki A; Mystrioti C; Xenidis A; Papassiopi N Bull Environ Contam Toxicol; 2018 Dec; 101(6):711-717. PubMed ID: 30171287 [TBL] [Abstract][Full Text] [Related]
63. Performance of biochar-supported nanoscale zero-valent iron for cadmium and arsenic co-contaminated soil remediation: Insights on availability, bioaccumulation and health risk. Yang D; Yang S; Wang L; Xu J; Liu X Environ Pollut; 2021 Dec; 290():118054. PubMed ID: 34461417 [TBL] [Abstract][Full Text] [Related]
64. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? Yang C; Ge C; Li X; Li L; Wang B; Lin A; Yang W Ecotoxicol Environ Saf; 2021 Jan; 208():111552. PubMed ID: 33396093 [TBL] [Abstract][Full Text] [Related]
65. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil. Qian W; Liang JY; Zhang WX; Huang ST; Diao ZH J Environ Sci (China); 2022 Mar; 113():231-241. PubMed ID: 34963531 [TBL] [Abstract][Full Text] [Related]
66. Cr(VI) immobilization in soil using lignin hydrogel supported nZVI: Immobilization mechanisms and long-term simulation. Liu X; Zhang S; Zhang X; Guo H; Lou Z; Zhang W; Chen Z Chemosphere; 2022 Oct; 305():135393. PubMed ID: 35724719 [TBL] [Abstract][Full Text] [Related]
67. Removal of hexavalent chromium from contaminated ground water using zero-valent iron nanoparticles. Singh R; Misra V; Singh RP Environ Monit Assess; 2012 Jun; 184(6):3643-51. PubMed ID: 21769560 [TBL] [Abstract][Full Text] [Related]
68. A highly porous animal bone-derived char with a superiority of promoting nZVI for Cr(VI) sequestration in agricultural soils. Liu K; Li F; Tian Q; Nie C; Ma Y; Zhu Z; Fang L; Huang Y; Liu S J Environ Sci (China); 2021 Jun; 104():27-39. PubMed ID: 33985730 [TBL] [Abstract][Full Text] [Related]
69. Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI) remediation. Lacalle RG; Garbisu C; Becerril JM Environ Sci Pollut Res Int; 2020 Sep; 27(25):31726-31736. PubMed ID: 32504423 [TBL] [Abstract][Full Text] [Related]
70. Chromium Removal with Environmentally Friendly Iron Nanoparticles in a Pilot Scale Study. Mystrioti C; Toli A; Papasiopi N; Dermatas D; Thimi S Bull Environ Contam Toxicol; 2018 Dec; 101(6):705-710. PubMed ID: 30167762 [TBL] [Abstract][Full Text] [Related]
71. Enhanced remediation of Cr(VI)-contaminated soil by modified zero-valent iron with oxalic acid on biochar. Xie L; Chen Q; Liu Y; Ma Q; Zhang J; Tang C; Duan G; Lin A; Zhang T; Li S Sci Total Environ; 2023 Dec; 905():167399. PubMed ID: 37793443 [TBL] [Abstract][Full Text] [Related]
72. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP. Yang Z; Fang Z; Tsang PE; Fang J; Zhao D J Environ Manage; 2016 Nov; 182():247-251. PubMed ID: 27479241 [TBL] [Abstract][Full Text] [Related]
73. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Wang J; Fang Z; Cheng W; Tsang PE; Zhao D Ecotoxicology; 2016 Aug; 25(6):1202-10. PubMed ID: 27207497 [TBL] [Abstract][Full Text] [Related]
74. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Jiang D; Zeng G; Huang D; Chen M; Zhang C; Huang C; Wan J Environ Res; 2018 May; 163():217-227. PubMed ID: 29459304 [TBL] [Abstract][Full Text] [Related]
75. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles. Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248 [TBL] [Abstract][Full Text] [Related]
76. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications. Sun P; Wang Z; An S; Zhao J; Yan Y; Zhang D; Wu Z; Shen B; Lyu H J Environ Manage; 2022 Aug; 316():115211. PubMed ID: 35561491 [TBL] [Abstract][Full Text] [Related]
77. Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution. Zhu L; Tong L; Zhao N; Li J; Lv Y Chemosphere; 2019 Mar; 219():493-503. PubMed ID: 30551116 [TBL] [Abstract][Full Text] [Related]
78. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. Wang S; Zhao M; Zhou M; Li YC; Wang J; Gao B; Sato S; Feng K; Yin W; Igalavithana AD; Oleszczuk P; Wang X; Ok YS J Hazard Mater; 2019 Jul; 373():820-834. PubMed ID: 30981127 [TBL] [Abstract][Full Text] [Related]
79. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. Gil-Díaz M; Alonso J; Rodríguez-Valdés E; Pinilla P; Lobo MC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1361-9. PubMed ID: 25072767 [TBL] [Abstract][Full Text] [Related]
80. Co-benefits of biochar-supported nanoscale zero-valent iron in simultaneously stabilizing soil heavy metals and reducing their bioaccessibility. Yang D; Yang S; Yuan H; Wang F; Wang H; Xu J; Liu X J Hazard Mater; 2021 Sep; 418():126292. PubMed ID: 34118546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]