These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27469105)

  • 1. Evaluation of transradial body-powered prostheses using a robotic simulator.
    Ayub R; Villarreal D; Gregg RD; Gao F
    Prosthet Orthot Int; 2017 Apr; 41(2):194-200. PubMed ID: 27469105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental apparatus to simulate body-powered prosthetic usage: Development and preliminary evaluation.
    Gao F; Rodriguez J; Kapp S
    Prosthet Orthot Int; 2016 Jun; 40(3):404-8. PubMed ID: 25820641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of novel 3D-printed robotic prosthetic for transradial amputees.
    Gretsch KF; Lather HD; Peddada KV; Deeken CR; Wall LB; Goldfarb CA
    Prosthet Orthot Int; 2016 Jun; 40(3):400-3. PubMed ID: 25934422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue-free operation of most body-powered prostheses not feasible for majority of users with trans-radial deficiency.
    Hichert M; Vardy AN; Plettenburg D
    Prosthet Orthot Int; 2018 Feb; 42(1):84-92. PubMed ID: 28621577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical design considerations for transradial prosthetic interface: A review.
    Sang Y; Li X; Luo Y
    Proc Inst Mech Eng H; 2016 Mar; 230(3):239-50. PubMed ID: 26759485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical application study of externally powered upper-limb prosthetics systems: the VA elbow, the VA hand, and the VA/NU myoelectric hand systems.
    Lewis EA; Sheredos CR; Sowell TT; Houston VL
    Bull Prosthet Res; 1975; (10-24):51-136. PubMed ID: 776301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic comparison of myoelectric and body powered prostheses while performing common activities.
    Carey SL; Dubey RV; Bauer GS; Highsmith MJ
    Prosthet Orthot Int; 2009 Jun; 33(2):179-86. PubMed ID: 19367522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
    Carey SL; Lura DJ; Highsmith MJ; ;
    J Rehabil Res Dev; 2015; 52(3):247-62. PubMed ID: 26230500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Case-study of a user-driven prosthetic arm design: bionic hand versus customized body-powered technology in a highly demanding work environment.
    Schweitzer W; Thali MJ; Egger D
    J Neuroeng Rehabil; 2018 Jan; 15(1):1. PubMed ID: 29298708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prosthetic use in adult upper limb amputees: a comparison of the body powered and electrically powered prostheses.
    Millstein SG; Heger H; Hunter GA
    Prosthet Orthot Int; 1986 Apr; 10(1):27-34. PubMed ID: 3725563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement quality of conventional prostheses and the DEKA Arm during everyday tasks.
    Cowley J; Resnik L; Wilken J; Smurr Walters L; Gates D
    Prosthet Orthot Int; 2017 Feb; 41(1):33-40. PubMed ID: 26932980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current evaluation of hydraulics to replace the cable force transmission system for body-powered upper-limb prostheses.
    LeBlanc M
    Assist Technol; 1990; 2(3):101-7. PubMed ID: 10149042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children.
    Zuniga JM; Carson AM; Peck JM; Kalina T; Srivastava RM; Peck K
    Prosthet Orthot Int; 2017 Apr; 41(2):205-209. PubMed ID: 27117013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The SmartHand transradial prosthesis.
    Cipriani C; Controzzi M; Carrozza MC
    J Neuroeng Rehabil; 2011 May; 8():29. PubMed ID: 21600048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ipsilateral Scapular Cutaneous Anchor System: An alternative for the harness in body-powered upper-limb prostheses.
    Hichert M; Plettenburg DH
    Prosthet Orthot Int; 2018 Feb; 42(1):101-106. PubMed ID: 28318402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is body powered operation of upper limb prostheses feasible for young limb deficient children?
    Shaperman J; Leblanc M; Setoguchi Y; McNeal DR
    Prosthet Orthot Int; 1995 Dec; 19(3):165-75. PubMed ID: 8927528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Empirical Evaluation of Force Feedback in Body-Powered Prostheses.
    Brown JD; Kunz TS; Gardner D; Shelley MK; Davis AJ; Gillespie RB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):215-226. PubMed ID: 27101614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses.
    Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.