BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 27469475)

  • 1. Vacuum pressure generation via microfabricated converging-diverging nozzles for operation of automated pneumatic logic.
    Christoforidis T; Werner EM; Hui EE; Eddington DT
    Biomed Microdevices; 2016 Aug; 18(4):74. PubMed ID: 27469475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle.
    Christoforidis T; Ng C; Eddington DT
    Biomed Microdevices; 2017 Sep; 19(3):58. PubMed ID: 28646280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-autonomous liquid handling via on-chip pneumatic digital logic.
    Nguyen TV; Duncan PN; Ahrar S; Hui EE
    Lab Chip; 2012 Oct; 12(20):3991-4. PubMed ID: 22968472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.
    Rhee M; Burns MA
    Lab Chip; 2009 Nov; 9(21):3131-43. PubMed ID: 19823730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuum-driven fluid manipulation by a piezoelectric diaphragm micropump for microfluidic droplet generation with a rapid system response time.
    Oda Y; Oshima H; Nakatani M; Hashimoto M
    Electrophoresis; 2019 Feb; 40(3):414-418. PubMed ID: 30281160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions.
    Trebbin M; Krüger K; DePonte D; Roth SV; Chapman HN; Förster S
    Lab Chip; 2014 May; 14(10):1733-45. PubMed ID: 24671443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.
    Cooksey GA; Plant AL; Atencia J
    Lab Chip; 2009 May; 9(9):1298-300. PubMed ID: 19370253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.
    Chen A; Pan T
    Lab Chip; 2014 Sep; 14(17):3401-8. PubMed ID: 25007840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.
    Devaraju NS; Unger MA
    Lab Chip; 2012 Nov; 12(22):4809-15. PubMed ID: 23000861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electromagnetic microvalve for pneumatic control of microfluidic systems.
    Liu X; Li S
    J Lab Autom; 2014 Oct; 19(5):444-53. PubMed ID: 24742860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays.
    Weng KY; Chou NJ; Cheng JW
    Lab Chip; 2008 Jul; 8(7):1216-9. PubMed ID: 18584101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices.
    An R; Hoffman MD; Donoghue MA; Hunt AJ; Jacobson SC
    Opt Express; 2008 Sep; 16(19):15206-11. PubMed ID: 18795059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electronic Venturi-based pressure microregulator.
    Chang DS; Langelier SM; Burns MA
    Lab Chip; 2007 Dec; 7(12):1791-9. PubMed ID: 18030402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nozzle geometry on critical-subcritical flow transitions.
    Singh J; Zerpa LE; Partington B; Gamboa J
    Heliyon; 2019 Feb; 5(2):e01273. PubMed ID: 30886925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micro-spherical heart pump powered by cultured cardiomyocytes.
    Tanaka Y; Sato K; Shimizu T; Yamato M; Okano T; Kitamori T
    Lab Chip; 2007 Feb; 7(2):207-12. PubMed ID: 17268623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SU8 diaphragm micropump with monolithically integrated cantilever check valves.
    Ezkerra A; Fernández LJ; Mayora K; Ruano-López JM
    Lab Chip; 2011 Oct; 11(19):3320-5. PubMed ID: 21853192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.