These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27469896)

  • 1. Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories.
    Guyot R; Darré T; Dupeyron M; de Kochko A; Hamon S; Couturon E; Crouzillat D; Rigoreau M; Rakotomalala JJ; Raharimalala NE; Akaffou SD; Hamon P
    Mol Genet Genomics; 2016 Oct; 291(5):1979-90. PubMed ID: 27469896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of Divo in Coffea genomes, a poorly described family of angiosperm LTR-Retrotransposons.
    Dupeyron M; de Souza RF; Hamon P; de Kochko A; Crouzillat D; Couturon E; Domingues DS; Guyot R
    Mol Genet Genomics; 2017 Aug; 292(4):741-754. PubMed ID: 28314936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea).
    Yu Q; Guyot R; de Kochko A; Byers A; Navajas-Pérez R; Langston BJ; Dubreuil-Tranchant C; Paterson AH; Poncet V; Nagai C; Ming R
    Plant J; 2011 Jul; 67(2):305-17. PubMed ID: 21457367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An 82 bp tandem repeat family typical of 3' non-coding end of Gypsy/TAT LTR retrotransposons is conserved in
    Cintra LA; Souza TB; Parteka LM; Barreto LM; Pereira LFP; Gaeta ML; Guyot R; Vanzela ALL
    Genome; 2022 Mar; 65(3):137-151. PubMed ID: 34727516
    [No Abstract]   [Full Text] [Related]  

  • 5. Genome evolution in diploid and tetraploid Coffea species as revealed by comparative analysis of orthologous genome segments.
    Cenci A; Combes MC; Lashermes P
    Plant Mol Biol; 2012 Jan; 78(1-2):135-45. PubMed ID: 22086332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources.
    Choudhury RR; Neuhaus JM; Parisod C
    Plant J; 2017 Jun; 90(5):979-993. PubMed ID: 28244250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FISH using a gag-like fragment probe reveals a common Ty3-gypsy-like retrotransposon in genome of Coffea species.
    Yuyama PM; Pereira LF; dos Santos TB; Sera T; Vilas-Boas LA; Lopes FR; Carareto CM; Vanzela AL
    Genome; 2012 Dec; 55(12):825-33. PubMed ID: 23231601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active transposable elements recover species boundaries and geographic structure in Madagascan coffee species.
    Roncal J; Guyot R; Hamon P; Crouzillat D; Rigoreau M; Konan ON; Rakotomalala JJ; Nowak MD; Davis AP; de Kochko A
    Mol Genet Genomics; 2016 Feb; 291(1):155-68. PubMed ID: 26231981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcollinearity in an ethylene receptor coding gene region of the Coffea canephora genome is extensively conserved with Vitis vinifera and other distant dicotyledonous sequenced genomes.
    Guyot R; de la Mare M; Viader V; Hamon P; Coriton O; Bustamante-Porras J; Poncet V; Campa C; Hamon S; de Kochko A
    BMC Plant Biol; 2009 Feb; 9():22. PubMed ID: 19243618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content.
    Hamon P; Grover CE; Davis AP; Rakotomalala JJ; Raharimalala NE; Albert VA; Sreenath HL; Stoffelen P; Mitchell SE; Couturon E; Hamon S; de Kochko A; Crouzillat D; Rigoreau M; Sumirat U; Akaffou S; Guyot R
    Mol Phylogenet Evol; 2017 Apr; 109():351-361. PubMed ID: 28212875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposable elements in Coffea (Gentianales: Rubiacea) transcripts and their role in the origin of protein diversity in flowering plants.
    Lopes FR; Carazzolle MF; Pereira GA; Colombo CA; Carareto CM
    Mol Genet Genomics; 2008 Apr; 279(4):385-401. PubMed ID: 18231813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex.
    Bardil A; Tayalé A; Parisod C
    Plant J; 2015 May; 82(4):621-31. PubMed ID: 25823965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Coffea chloroplast microsatellites and evidence for the recent divergence of C. arabica and C. eugenioides chloroplast genomes.
    Tesfaye K; Borsch T; Govers K; Bekele E
    Genome; 2007 Dec; 50(12):1112-29. PubMed ID: 18059539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terminal-repeat retrotransposons with GAG domain in plant genomes: a new testimony on the complex world of transposable elements.
    Chaparro C; Gayraud T; de Souza RF; Domingues DS; Akaffou S; Laforga Vanzela AL; Kochko Ad; Rigoreau M; Crouzillat D; Hamon S; Hamon P; Guyot R
    Genome Biol Evol; 2015 Jan; 7(2):493-504. PubMed ID: 25573958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two novel Ty1-copia retrotransposons isolated from coffee trees can effectively reveal evolutionary relationships in the Coffea genus (Rubiaceae).
    Hamon P; Duroy PO; Dubreuil-Tranchant C; Mafra D'Almeida Costa P; Duret C; Razafinarivo NJ; Couturon E; Hamon S; de Kochko A; Poncet V; Guyot R
    Mol Genet Genomics; 2011 Jun; 285(6):447-60. PubMed ID: 21505885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits.
    Yuyama PM; Reis Júnior O; Ivamoto ST; Domingues DS; Carazzolle MF; Pereira GA; Charmetant P; Leroy T; Pereira LF
    Mol Genet Genomics; 2016 Feb; 291(1):323-36. PubMed ID: 26334613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic structure and diversity of coffee (Coffea) across Africa and the Indian Ocean islands revealed using microsatellites.
    Razafinarivo NJ; Guyot R; Davis AP; Couturon E; Hamon S; Crouzillat D; Rigoreau M; Dubreuil-Tranchant C; Poncet V; De Kochko A; Rakotomalala JJ; Hamon P
    Ann Bot; 2013 Feb; 111(2):229-48. PubMed ID: 23275631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm.
    Scalabrin S; Toniutti L; Di Gaspero G; Scaglione D; Magris G; Vidotto M; Pinosio S; Cattonaro F; Magni F; Jurman I; Cerutti M; Suggi Liverani F; Navarini L; Del Terra L; Pellegrino G; Ruosi MR; Vitulo N; Valle G; Pallavicini A; Graziosi G; Klein PE; Bentley N; Murray S; Solano W; Al Hakimi A; Schilling T; Montagnon C; Morgante M; Bertrand B
    Sci Rep; 2020 Mar; 10(1):4642. PubMed ID: 32170172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resequencing 93 accessions of coffee unveils independent and parallel selection during Coffea species divergence.
    Huang L; Wang X; Dong Y; Long Y; Hao C; Yan L; Shi T
    Plant Mol Biol; 2020 May; 103(1-2):51-61. PubMed ID: 32072392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.