These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 27470281)
1. Proteomic Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) Degradation and Detoxification in Lee SY; Sekhon SS; Ban YH; Ahn JY; Ko JH; Lee L; Kim SY; Kim YC; Kim YH J Microbiol Biotechnol; 2016 Nov; 26(11):1943-1950. PubMed ID: 27470281 [TBL] [Abstract][Full Text] [Related]
2. Genomic and Proteomic Evidences for Exopolysaccharide Biosynthesis in Lee SY; Sekhon SS; Kim M; Ahn JY; Kim HC; Kim YC; Kim YH J Nanosci Nanotechnol; 2018 Jun; 18(6):3936-3943. PubMed ID: 29442729 [TBL] [Abstract][Full Text] [Related]
3. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1. Yun SH; Choi CW; Lee SY; Lee YG; Kwon J; Leem SH; Chung YH; Kahng HY; Kim SJ; Kwon KK; Kim SI PLoS One; 2014; 9(6):e90812. PubMed ID: 24608660 [TBL] [Abstract][Full Text] [Related]
4. Molecular Basis and Evolutionary Origin of 1-Nitronaphthalene Catabolism in Li T; Xu J; Brower AL; Xu ZJ; Xu Y; Spain JC; Zhou NY Appl Environ Microbiol; 2023 Jan; 89(1):e0172822. PubMed ID: 36622195 [TBL] [Abstract][Full Text] [Related]
5. Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. Chadhain SM; Moritz EM; Kim E; Zylstra GJ J Ind Microbiol Biotechnol; 2007 Sep; 34(9):605-13. PubMed ID: 17647036 [TBL] [Abstract][Full Text] [Related]
6. Insights in the regulation of the degradation of PAHs in Novosphingobium sp. HR1a and utilization of this regulatory system as a tool for the detection of PAHs. Segura A; Hernández-Sánchez V; Marqués S; Molina L Sci Total Environ; 2017 Jul; 590-591():381-393. PubMed ID: 28285855 [TBL] [Abstract][Full Text] [Related]
7. Complete sequence and organization of the Sphingobium chungbukense DJ77 pSY2 plasmid. Yeon SM; Kim YC J Microbiol; 2011 Aug; 49(4):684-8. PubMed ID: 21887656 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a topologically unique oxygenase from Sphingobium sp. PNB capable of catalyzing a broad spectrum of aromatics. Khara P; Roy M; Chakraborty J; Dutta A; Dutta TK Enzyme Microb Technol; 2018 Apr; 111():74-80. PubMed ID: 29421041 [TBL] [Abstract][Full Text] [Related]
9. Versatile catechol dioxygenases in Sphingobium scionense WP01 Muthu M; Ophir Y; Macdonald LJ; Vaidya A; Lloyd-Jones G Antonie Van Leeuwenhoek; 2018 Dec; 111(12):2293-2301. PubMed ID: 29959655 [TBL] [Abstract][Full Text] [Related]
10. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). Pinyakong O; Habe H; Omori T J Gen Appl Microbiol; 2003 Feb; 49(1):1-19. PubMed ID: 12682862 [TBL] [Abstract][Full Text] [Related]
11. Molecular Docking Analysis and Biochemical Evaluation of Levansucrase from Sphingobium chungbukense DJ77. Lee SY; Shin WR; Sekhon SS; Lee JP; Kim YC; Ahn JY; Kim YH ACS Comb Sci; 2018 Jul; 20(7):414-422. PubMed ID: 29812898 [TBL] [Abstract][Full Text] [Related]
12. Effect of inoculum pretreatment on survival, activity and catabolic gene expression of Sphingobium yanoikuyae B1 in an aged polycyclic aromatic hydrocarbon-contaminated soil. Cunliffe M; Kawasaki A; Fellows E; Kertesz MA FEMS Microbiol Ecol; 2006 Dec; 58(3):364-72. PubMed ID: 17117981 [TBL] [Abstract][Full Text] [Related]
13. Sphingobium sp. HV3 degrades both herbicides and polyaromatic hydrocarbons using ortho- and meta-pathways with differential expression shown by RT-PCR. Sipilä TP; Väisänen P; Paulin L; Yrjälä K Biodegradation; 2010 Sep; 21(5):771-84. PubMed ID: 20182771 [TBL] [Abstract][Full Text] [Related]
14. Biochemical characterization and molecular docking analysis of novel esterases from Sphingobium chungbukense DJ77. Shin WR; Um HJ; Kim YC; Kim SC; Cho BK; Ahn JY; Min J; Kim YH Int J Biol Macromol; 2021 Jan; 168():403-411. PubMed ID: 33321136 [TBL] [Abstract][Full Text] [Related]
15. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry. Maeda AH; Nishi S; Hatada Y; Ozeki Y; Kanaly RA Microb Biotechnol; 2014 Mar; 7(2):114-29. PubMed ID: 24325265 [TBL] [Abstract][Full Text] [Related]
16. Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259. Bourguignon N; Irazusta V; Isaac P; Estévez C; Maizel D; Ferrero MA Ecotoxicol Environ Saf; 2019 Jul; 175():19-28. PubMed ID: 30878660 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons. Tam NF; Wong YS Mar Pollut Bull; 2008; 57(6-12):716-26. PubMed ID: 18374368 [TBL] [Abstract][Full Text] [Related]
18. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Vila J; López Z; Sabaté J; Minguillón C; Solanas AM; Grifoll M Appl Environ Microbiol; 2001 Dec; 67(12):5497-505. PubMed ID: 11722898 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Johnsen AR; Karlson U Appl Microbiol Biotechnol; 2004 Jan; 63(4):452-9. PubMed ID: 14716468 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Peng R; Fu X; Tian Y; Zhao W; Zhu B; Xu J; Wang B; Wang L; Yao Q Metab Eng; 2014 Nov; 26():100-110. PubMed ID: 25305469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]