These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27470561)

  • 1. High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania.
    Pandey RK; Verma P; Sharma D; Bhatt TK; Sundar S; Prajapati VK
    Biomed Pharmacother; 2016 Oct; 83():141-152. PubMed ID: 27470561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation.
    Pandey RK; Kumbhar BV; Srivastava S; Malik R; Sundar S; Kunwar A; Prajapati VK
    J Biomol Struct Dyn; 2017 Jan; 35(1):141-158. PubMed ID: 27043972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach.
    Pandey RK; Sharma D; Bhatt TK; Sundar S; Prajapati VK
    J Biomol Struct Dyn; 2015; 33(12):2541-53. PubMed ID: 26305585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase.
    Pandey RK; Kumbhar BV; Sundar S; Kunwar A; Prajapati VK
    J Recept Signal Transduct Res; 2017 Feb; 37(1):60-70. PubMed ID: 27147242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening.
    Turcano L; Torrente E; Missineo A; Andreini M; Gramiccia M; Di Muccio T; Genovese I; Fiorillo A; Harper S; Bresciani A; Colotti G; Ilari A
    PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006969. PubMed ID: 30475811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs.
    Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A
    Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum.
    Venkatesan SK; Shukla AK; Dubey VK
    J Comput Chem; 2010 Oct; 31(13):2463-75. PubMed ID: 20340105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase.
    Ortalli M; Ilari A; Colotti G; De Ionna I; Battista T; Bisi A; Gobbi S; Rampa A; Di Martino RMC; Gentilomi GA; Varani S; Belluti F
    Eur J Med Chem; 2018 May; 152():527-541. PubMed ID: 29758517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-based compounds as prospective antileishmanial agents: inhibition of trypanothione reductase by selected gold complexes.
    Colotti G; Ilari A; Fiorillo A; Baiocco P; Cinellu MA; Maiore L; Scaletti F; Gabbiani C; Messori L
    ChemMedChem; 2013 Oct; 8(10):1634-7. PubMed ID: 24039168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of 3-Methoxycarpachromene and Masticadienonic Acid as New Target Inhibitors against Trypanothione Reductase from
    Maamri S; Benarous K; Yousfi M
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34206087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening natural products database for identification of potential antileishmanial chemotherapeutic agents.
    Venkatesan SK; Saudagar P; Shukla AK; Dubey VK
    Interdiscip Sci; 2011 Sep; 3(3):217-31. PubMed ID: 21956744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights about resveratrol analogs against trypanothione reductase of
    da Silva AD; Dos Santos JA; Machado PA; Alves LA; Laque LC; de Souza VC; Coimbra ES; Capriles PVSZ
    J Biomol Struct Dyn; 2019 Jul; 37(11):2960-2969. PubMed ID: 30058445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae).
    Lima GS; Castro-Pinto DB; Machado GC; Maciel MA; Echevarria A
    Phytomedicine; 2015 Nov; 22(12):1133-7. PubMed ID: 26547537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of New and Potent Lead Molecules Against CAAX Prenyl Protease I of Leishmania donovani Through Pharmacophore Based Virtual Screening Approach.
    Prabhu SV; Tiwari K; Suryanarayanan V; Dubey VK; Singh SK
    Comb Chem High Throughput Screen; 2017; 20(3):255-271. PubMed ID: 28116998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of selective ligands for trypanothione reductase from Trypanosoma cruzi. Structural effects on the inhibition by dibenzazepines based on imipramine.
    Garforth J; Yin H; McKie JH; Douglas KT; Fairlamb AH
    J Enzyme Inhib; 1997 Aug; 12(3):161-73. PubMed ID: 9314113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a Drug Against All Kinetoplastids: From LeishBox to Specific and Potent Trypanothione Reductase Inhibitors.
    Ilari A; Genovese I; Fiorillo F; Battista T; De Ionna I; Fiorillo A; Colotti G
    Mol Pharm; 2018 Aug; 15(8):3069-3078. PubMed ID: 29897765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Trypanothione Reductase of Leishmanial major to Fight Against Cutaneous Leishmaniasis.
    Dukhyil AAAB
    Infect Disord Drug Targets; 2019; 19(4):388-393. PubMed ID: 29732996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple colorimetric trypanothione reductase-based assay for high-throughput screening of drugs against Leishmania intracellular amastigotes.
    van den Bogaart E; Schoone GJ; England P; Faber D; Orrling KM; Dujardin JC; Sundar S; Schallig HD; Adams ER
    Antimicrob Agents Chemother; 2014; 58(1):527-35. PubMed ID: 24189262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Modeling and Virtual Screening Approach to Discover Potential Antileishmanial Inhibitors Against Ornithine Decarboxylase.
    Pandey RK; Prajapati P; Goyal S; Grover A; Prajapati VK
    Comb Chem High Throughput Screen; 2016; 19(10):813-823. PubMed ID: 27604958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs.
    Chan C; Yin H; Garforth J; McKie JH; Jaouhari R; Speers P; Douglas KT; Rock PJ; Yardley V; Croft SL; Fairlamb AH
    J Med Chem; 1998 Jan; 41(2):148-56. PubMed ID: 9457238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.