BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27470675)

  • 1. Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion.
    Hasegawa E; Truman JW; Nose A
    Sci Rep; 2016 Jul; 6():30806. PubMed ID: 27470675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.
    Itakura Y; Kohsaka H; Ohyama T; Zlatic M; Pulver SR; Nose A
    PLoS One; 2015; 10(9):e0136660. PubMed ID: 26335437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae.
    Kohsaka H; Takasu E; Morimoto T; Nose A
    Curr Biol; 2014 Nov; 24(22):2632-42. PubMed ID: 25438948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A subset of interneurons required for Drosophila larval locomotion.
    Yoshikawa S; Long H; Thomas JB
    Mol Cell Neurosci; 2016 Jan; 70():22-9. PubMed ID: 26621406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of coordinated muscular relaxation in Drosophila larvae by a pattern-regulating intersegmental circuit.
    Hiramoto A; Jonaitis J; Niki S; Kohsaka H; Fetter RD; Cardona A; Pulver SR; Nose A
    Nat Commun; 2021 May; 12(1):2943. PubMed ID: 34011945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval
    Matsunaga T; Kohsaka H; Nose A
    J Neurosci; 2017 Feb; 37(8):2045-2060. PubMed ID: 28115483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae.
    Kohsaka H; Zwart MF; Fushiki A; Fetter RD; Truman JW; Cardona A; Nose A
    Nat Commun; 2019 Jun; 10(1):2654. PubMed ID: 31201326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving
    Gowda SBM; Paranjpe PD; Reddy OV; Thiagarajan D; Palliyil S; Reichert H; VijayRaghavan K
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2115-E2124. PubMed ID: 29440493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic activation of excitatory premotor interneurons is sufficient to generate coordinated locomotor activity in larval zebrafish.
    Ljunggren EE; Haupt S; Ausborn J; Ampatzis K; El Manira A
    J Neurosci; 2014 Jan; 34(1):134-9. PubMed ID: 24381274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronous multi-segmental activity between metachronal waves controls locomotion speed in
    Liu Y; Hasegawa E; Nose A; Zwart MF; Kohsaka H
    Elife; 2023 Aug; 12():. PubMed ID: 37551094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circuit mechanism for the propagation of waves of muscle contraction in Drosophila.
    Fushiki A; Zwart MF; Kohsaka H; Fetter RD; Cardona A; Nose A
    Elife; 2016 Feb; 5():. PubMed ID: 26880545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal Basis of Direction Control during Locomotion in Larval Zebrafish.
    Jay M; MacIver MA; McLean DL
    J Neurosci; 2023 May; 43(22):4062-4074. PubMed ID: 37127363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximal and distal spinal neurons innervating multiple synergist and antagonist motor pools.
    Ronzano R; Lancelin C; Bhumbra GS; Brownstone RM; Beato M
    Elife; 2021 Nov; 10():. PubMed ID: 34727018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multilayer circuit architecture for the generation of distinct locomotor behaviors in
    Zarin AA; Mark B; Cardona A; Litwin-Kumar A; Doe CQ
    Elife; 2019 Dec; 8():. PubMed ID: 31868582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs.
    Clark MQ; McCumsey SJ; Lopez-Darwin S; Heckscher ES; Doe CQ
    G3 (Bethesda); 2016 Jul; 6(7):2023-31. PubMed ID: 27172197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Inhibition Mediates the Sequential Recruitment of Motor Pools.
    Zwart MF; Pulver SR; Truman JW; Fushiki A; Fetter RD; Cardona A; Landgraf M
    Neuron; 2016 Aug; 91(3):615-28. PubMed ID: 27427461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitatory motor neurons are local oscillators for backward locomotion.
    Gao S; Guan SA; Fouad AD; Meng J; Kawano T; Huang YC; Li Y; Alcaire S; Hung W; Lu Y; Qi YB; Jin Y; Alkema M; Fang-Yen C; Zhen M
    Elife; 2018 Jan; 7():. PubMed ID: 29360035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation.
    Fox LE; Soll DR; Wu CF
    J Neurosci; 2006 Feb; 26(5):1486-98. PubMed ID: 16452672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.