BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 274711)

  • 1. Aspartic acid racemization in heavy molecular weight crystallins and water insoluble protein from normal human lenses and cataracts.
    Masters PM; Bada JL; Zigler JS
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1204-8. PubMed ID: 274711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Racemization in human lens: evidence of rapid insolubilization of specific polypeptides in cataract formation.
    Garner WH; Spector A
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3618-20. PubMed ID: 278977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of aging and cataract formation on the trypsin inhibitor activity of human lens.
    Srivastava OP; Ortwerth BJ
    Exp Eye Res; 1989 Jan; 48(1):25-36. PubMed ID: 2920782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Racemization of aspartyl residues in proteins from normal and cataractous human lenses: an aging process without involvement in cataract formation.
    van den Oetelaar PJ; Hoenders HJ
    Exp Eye Res; 1989 Feb; 48(2):209-14. PubMed ID: 2924808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Racemization at the Asp 58 residue in αA-crystallin from the lens of high myopic cataract patients.
    Zhu XJ; Zhang KK; He WW; Du Y; Hooi M; Lu Y
    J Cell Mol Med; 2018 Feb; 22(2):1118-1126. PubMed ID: 28994184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients.
    Bours J; el-Layeh AA; Emarah MH; Rink H
    Ophthalmic Res; 1995; 27 Suppl 1():54-61. PubMed ID: 8577463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein changes in the human lens during development of senile nuclear cataract.
    Kramps HA; Hoenders HJ; Wollensak J
    Biochim Biophys Acta; 1976 May; 434(1):32-43. PubMed ID: 938670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography.
    Pereira PC; Ramalho JS; Faro CJ; Mota MC
    Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses.
    Fujii N; Sakaue H; Sasaki H; Fujii N
    J Biol Chem; 2012 Nov; 287(47):39992-40002. PubMed ID: 23007399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related increase in concentration and aggregation of degraded polypeptides in human lenses.
    Srivastava OP
    Exp Eye Res; 1988 Oct; 47(4):525-43. PubMed ID: 3181333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isomerization of aspartyl residues in crystallins and its influence upon cataract.
    Fujii N; Takata T; Fujii N; Aki K
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):183-91. PubMed ID: 26275494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.
    Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N
    Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycation of crystallins in lenses from aging and diabetic individuals.
    van Boekel MA; Hoenders HJ
    FEBS Lett; 1992 Dec; 314(1):1-4. PubMed ID: 1451795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Studies on human gamma-crystallins. I. Quantitative changes with age and cataract formation].
    Wu K; Li S; Pan S; Liang S; Cao X
    Yan Ke Xue Bao; 1992 Jun; 8(2):68-72. PubMed ID: 1299602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cataract incidence and analysis of lens crystallins in the water-, urea- and SDS-soluble fractions of Emory mice fed a diet restricted by 40% in calories.
    Mura CV; Roh S; Smith D; Palmer V; Padhye N; Taylor A
    Curr Eye Res; 1993 Dec; 12(12):1081-91. PubMed ID: 8137632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.