BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27471157)

  • 1. Upconversion ratiometric fluorescence and colorimetric dual-readout assay for uric acid.
    Fang A; Wu Q; Lu Q; Chen H; Li H; Liu M; Zhang Y; Yao S
    Biosens Bioelectron; 2016 Dec; 86():664-670. PubMed ID: 27471157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect.
    Long Q; Fang A; Wen Y; Li H; Zhang Y; Yao S
    Biosens Bioelectron; 2016 Dec; 86():109-114. PubMed ID: 27341137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular structure regulation and enzyme cascade signal amplification strategy for upconversion ratiometric luminescent and colorimetric alkaline phosphatase detection.
    Chen H; Zhou Z; Lu Q; Wu C; Liu M; Zhang Y; Yao S
    Anal Chim Acta; 2019 Mar; 1051():160-168. PubMed ID: 30661613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mn
    Zhou Y; Ling B; Chen H; Wang L
    Talanta; 2018 Apr; 180():120-126. PubMed ID: 29332789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual-signal colorimetric and ratiometric fluorescent nanoprobe for enzymatic determination of uric acid by using silicon nanoparticles.
    Wu C; Zhu L; Lu Q; Li H; Zhang Y; Yao S
    Mikrochim Acta; 2019 Nov; 186(12):754. PubMed ID: 31705210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ''naked-eye'' colorimetric and ratiometric fluorescence probe for uric acid based on Ti
    Liu M; He Y; Zhou J; Ge Y; Zhou J; Song G
    Anal Chim Acta; 2020 Mar; 1103():134-142. PubMed ID: 32081178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Inner Filter Effects-Based Upconversion Nanoparticles-Curcumin Nanosystem for the Sensitive Sensing of Fluoride Ion.
    Liu Y; Ouyang Q; Li H; Zhang Z; Chen Q
    ACS Appl Mater Interfaces; 2017 May; 9(21):18314-18321. PubMed ID: 28485571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly sensitive dual-read assay using nitrogen-doped carbon dots for the quantitation of uric acid in human serum and urine samples.
    Li F; Rui J; Yan Z; Qiu P; Tang X
    Mikrochim Acta; 2021 Aug; 188(9):311. PubMed ID: 34455515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratiometric fluorescent nanosensors for selective detecting cysteine with upconversion luminescence.
    Guan Y; Qu S; Li B; Zhang L; Ma H; Zhang L
    Biosens Bioelectron; 2016 Mar; 77():124-30. PubMed ID: 26402589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facet dependent binding and etching: ultra-sensitive colorimetric visualization of blood uric acid by unmodified silver nanoprisms.
    Tan K; Yang G; Chen H; Shen P; Huang Y; Xia Y
    Biosens Bioelectron; 2014 Sep; 59():227-32. PubMed ID: 24732599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Reaction-Based Multimodal Assay for Dopamine with High Sensitivity and Selectivity Using Functionalized Gold Nanoparticles.
    Zeng Z; Cui B; Wang Y; Sun C; Zhao X; Cui H
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16518-24. PubMed ID: 26171655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly selective and sensitive colorimetric detection of uric acid in human serum based on MoS
    Wang X; Yao Q; Tang X; Zhong H; Qiu P; Wang X
    Anal Bioanal Chem; 2019 Feb; 411(4):943-952. PubMed ID: 30542813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum.
    Wu Q; Fang A; Li H; Zhang Y; Yao S
    Biosens Bioelectron; 2016 Mar; 77():957-62. PubMed ID: 26544870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles.
    Dai S; Wu S; Duan N; Wang Z
    Talanta; 2016 Sep; 158():246-253. PubMed ID: 27343602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c.
    Guo T; Deng Q; Fang G; Liu C; Huang X; Wang S
    Biosens Bioelectron; 2015 Dec; 74():498-503. PubMed ID: 26176210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels.
    Wu S; Duan N; Zhu C; Ma X; Wang M; Wang Z
    Biosens Bioelectron; 2011 Dec; 30(1):35-42. PubMed ID: 21930370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upconversion nanoparticles for ratiometric fluorescence detection of nitrite.
    Han J; Zhang C; Liu F; Liu B; Han M; Zou W; Yang L; Zhang Z
    Analyst; 2014 Jun; 139(12):3032-8. PubMed ID: 24802563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upconversion color tuning in Ce(3+)-doped LiYF(4):Yb(3+)/Ho(3+)@LiYF(4) nanoparticles towards ratiometric fluorescence detection of chromium(III).
    Liu S; Li Y; Zhang C; Yang L; Zhao T; Zhang R; Jiang C
    J Colloid Interface Sci; 2017 May; 493():10-16. PubMed ID: 28088116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator.
    Wang C; Qian J; Wang K; Yang X; Liu Q; Hao N; Wang C; Dong X; Huang X
    Biosens Bioelectron; 2016 Mar; 77():1183-91. PubMed ID: 26583358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.