These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27471509)

  • 1. Group 3 LEA Protein, ZmLEA3, Is Involved in Protection from Low Temperature Stress.
    Liu Y; Liang J; Sun L; Yang X; Li D
    Front Plant Sci; 2016; 7():1011. PubMed ID: 27471509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses.
    Liu Y; Wang L; Xing X; Sun L; Pan J; Kong X; Zhang M; Li D
    Plant Cell Physiol; 2013 Jun; 54(6):944-59. PubMed ID: 23543751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast.
    Liu Y; Wang L; Jiang S; Pan J; Cai G; Li D
    Plant Physiol Biochem; 2014 Nov; 84():22-31. PubMed ID: 25240107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of ZmDHN11 could enhance transgenic yeast and tobacco tolerance to osmotic stress.
    Ju H; Li D; Li D; Yang X; Liu Y
    Plant Cell Rep; 2021 Sep; 40(9):1723-1733. PubMed ID: 34142216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A LEA 4 protein up-regulated by ABA is involved in drought response in maize roots.
    Zamora-Briseño JA; de Jiménez ES
    Mol Biol Rep; 2016 Apr; 43(4):221-8. PubMed ID: 26922182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance.
    Dalal M; Tayal D; Chinnusamy V; Bansal KC
    J Biotechnol; 2009 Jan; 139(2):137-45. PubMed ID: 19014980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress.
    Espelund M; Saebøe-Larssen S; Hughes DW; Galau GA; Larsen F; Jakobsen KS
    Plant J; 1992 Mar; 2(2):241-52. PubMed ID: 1302052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response.
    Lim CW; Lim S; Baek W; Lee SC
    Physiol Plant; 2015 Aug; 154(4):526-42. PubMed ID: 25302464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco.
    Sharma A; Kumar D; Kumar S; Rampuria S; Reddy AR; Kirti PB
    PLoS One; 2016; 11(3):e0150609. PubMed ID: 26938884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana.
    Wang X; Zhang L; Zhang Y; Bai Z; Liu H; Zhang D
    PLoS One; 2017; 12(2):e0171340. PubMed ID: 28207772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel LEA protein involved in freezing tolerance in wheat.
    Sasaki K; Christov NK; Tsuda S; Imai R
    Plant Cell Physiol; 2014 Jan; 55(1):136-47. PubMed ID: 24265272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in Azotobacter vinelandii.
    Rodriguez-Salazar J; Moreno S; Espín G
    Cell Stress Chaperones; 2017 May; 22(3):397-408. PubMed ID: 28258486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional analysis of a wheat group 3 late embryogenesis abundant protein in
    Yu Z; Wang X; Tian Y; Zhang D; Zhang L
    Plant Signal Behav; 2019; 14(11):1667207. PubMed ID: 31524548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize.
    Wu X; Gong F; Yang L; Hu X; Tai F; Wang W
    Front Plant Sci; 2014; 5():801. PubMed ID: 25653661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses.
    Abdul Aziz M; Sabeem M; Mullath SK; Brini F; Masmoudi K
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton.
    Magwanga RO; Lu P; Kirungu JN; Lu H; Wang X; Cai X; Zhou Z; Zhang Z; Salih H; Wang K; Liu F
    BMC Genet; 2018 Jan; 19(1):6. PubMed ID: 29334890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of
    Bao F; Du D; An Y; Yang W; Wang J; Cheng T; Zhang Q
    Front Plant Sci; 2017; 8():151. PubMed ID: 28224001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system.
    Ling H; Zeng X; Guo S
    Sci Rep; 2016 Dec; 6():39693. PubMed ID: 28004781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Short Peptide Designed from Late Embryogenesis Abundant Protein Enhances Acid Tolerance in Escherichia coli.
    Metwally K; Ikeno S
    Appl Biochem Biotechnol; 2020 May; 191(1):164-176. PubMed ID: 32096062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Plasticity of Intrinsically Disordered LEA Proteins from
    Artur MAS; Rienstra J; Dennis TJ; Farrant JM; Ligterink W; Hilhorst H
    Front Plant Sci; 2019; 10():1272. PubMed ID: 31681372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.