These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 27471907)
1. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium. Liu SG; Luo D; Li N; Zhang W; Lei JL; Li NB; Luo HQ ACS Appl Mater Interfaces; 2016 Aug; 8(33):21700-9. PubMed ID: 27471907 [TBL] [Abstract][Full Text] [Related]
2. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution. Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223 [TBL] [Abstract][Full Text] [Related]
3. Preparation of nonconjugated fluorescent polymer nanoparticles for use as a fluorescent probe for detection of 2,4,6-trinitrophenol. Liu J; Wu F; Xie A; Liu C; Bao H Anal Bioanal Chem; 2020 Feb; 412(5):1235-1242. PubMed ID: 31907591 [TBL] [Abstract][Full Text] [Related]
4. Heteroatom-Doped Carbon Quantum Dots and Polymer Composite as Dual-Mode Nanoprobe for Fluorometric and Colorimetric Determination of Picric Acid. Koç ÖK; Üzer A; Apak R ACS Appl Mater Interfaces; 2023 Sep; 15(35):42066-42079. PubMed ID: 37611222 [TBL] [Abstract][Full Text] [Related]
5. Sensitive detection of picric acid in an aqueous solution using fluorescent nonconjugated polymer dots as fluorescent probes. Liu J; Fu T; Liu C; Wu F; Wang H Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34034241 [TBL] [Abstract][Full Text] [Related]
6. A perylene monoimide probe based fluorescent micelle sensor for the selective and sensitive detection of picric acid. Li W; Zhou H; Hayat Nawaz MA; Niu N; Yang N; Ren J; Yu C Anal Methods; 2020 Nov; 12(44):5353-5359. PubMed ID: 33104151 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence Emission of Polyethylenimine-Derived Polymer Dots and Its Application to Detect Copper and Hypochlorite Ions. Zhang H; Dong X; Wang J; Guan R; Cao D; Chen Q ACS Appl Mater Interfaces; 2019 Sep; 11(35):32489-32499. PubMed ID: 31393690 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Fluorescent Nitrogen-Doped Carbon Quantum Dots for Selective Detection of Picric Acid in Water Samples. Tian M; Wang Y; Zhang Y J Nanosci Nanotechnol; 2018 Dec; 18(12):8111-8117. PubMed ID: 30189927 [TBL] [Abstract][Full Text] [Related]
9. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. Malik AH; Hussain S; Kalita A; Iyer PK ACS Appl Mater Interfaces; 2015 Dec; 7(48):26968-76. PubMed ID: 26580229 [TBL] [Abstract][Full Text] [Related]
10. Facile preparation of fluorescent water-soluble non-conjugated polymer dots and fabricating an acetylcholinesterase biosensor. Li CH; Wang WF; Stanislas N; Yang JL RSC Adv; 2022 Mar; 12(13):7911-7921. PubMed ID: 35424765 [TBL] [Abstract][Full Text] [Related]
12. A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium. Kaja S; Damera DP; Nag A Anal Chim Acta; 2020 Sep; 1129():12-23. PubMed ID: 32891381 [TBL] [Abstract][Full Text] [Related]
13. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters. Zhang JR; Yue YY; Luo HQ; Li NB Analyst; 2016 Feb; 141(3):1091-7. PubMed ID: 26661456 [TBL] [Abstract][Full Text] [Related]
14. Green Synthesis of Blue Fluorescent P-doped Carbon Dots for the Selective Determination of Picric Acid in an Aqueous Medium. Ju YJ; Li N; Liu SG; Fan YZ; Ling Y; Xiao N; Luo HQ; Li NB Anal Sci; 2019 Feb; 35(2):147-152. PubMed ID: 30249931 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of samarium orthoferrite-based perovskite nanoparticles as a turn-on fluorescent probe for trace level detection of picric acid. Kayhomayun Z; Ghani K; Zargoosh K Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121627. PubMed ID: 35853251 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional Binding Strategy on Nonconjugated Polymer Nanoparticles for Ratiometric Detection and Effective Removal of Mercury Ions. Fan YZ; Han L; Yang YZ; Sun Z; Li N; Li BL; Luo HQ; Li NB Environ Sci Technol; 2020 Aug; 54(16):10270-10278. PubMed ID: 32697576 [TBL] [Abstract][Full Text] [Related]
17. Water-soluble polymer functionalized CdTe/ZnS quantum dots: a facile ratiometric fluorescent probe for sensitive and selective detection of nitroaromatic explosives. Liu B; Tong C; Feng L; Wang C; He Y; Lü C Chemistry; 2014 Feb; 20(8):2132-7. PubMed ID: 24515606 [TBL] [Abstract][Full Text] [Related]
18. Intrinsically ESIPT-exhibiting and enhanced emission in polymer nanoparticles as signaling for sensing nitrite. Wang Q; He L; Zeng D; Zou W; Gong F; Xia J; Cao Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117654. PubMed ID: 31629981 [TBL] [Abstract][Full Text] [Related]
19. Macromolecular Systems with MSA-Capped CdTe and CdTe/ZnS Core/Shell Quantum Dots as Superselective and Ultrasensitive Optical Sensors for Picric Acid Explosive. Dutta P; Saikia D; Adhikary NC; Sarma NS ACS Appl Mater Interfaces; 2015 Nov; 7(44):24778-90. PubMed ID: 26484725 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence chemical sensor for determining trace levels of nitroaromatic explosives in water based on conjugated polymer with guanidinium side groups. Mi HY; Liu JL; Guan MM; Liu QW; Zhang ZQ; Feng GD Talanta; 2018 Sep; 187():314-320. PubMed ID: 29853053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]