These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 27471907)
21. Water-dispersed fluorescent silicon nanodots as probes for fluorometric determination of picric acid via energy transfer. Qi W; He H; Fu Y; Zhao M; Qi L; Hu L; Liu C; Li R Mikrochim Acta; 2018 Dec; 186(1):18. PubMed ID: 30552514 [TBL] [Abstract][Full Text] [Related]
22. Anthracene based AIEgen for picric acid detection in real water samples. Gowri A; Vignesh R; Kathiravan A Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117144. PubMed ID: 31141777 [TBL] [Abstract][Full Text] [Related]
23. Tetraphenylethene probe based fluorescent silica nanoparticles for the selective detection of nitroaromatic explosives. Nawaz MAH; Meng L; Zhou H; Ren J; Shahzad SA; Hayat A; Yu C Anal Methods; 2021 Feb; 13(6):825-831. PubMed ID: 33502411 [TBL] [Abstract][Full Text] [Related]
24. Sensing of picric acid using an AIEE active "Turn Off" fluorescent probe derived from hydroxy naphthaldehyde and benzyloxy benzaldehyde. Arshad M; Sowmya P; Paul A; Joseph A Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123465. PubMed ID: 37783035 [TBL] [Abstract][Full Text] [Related]
25. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range. Hariharan PS; Pitchaimani J; Madhu V; Anthony SP J Fluoresc; 2016 Mar; 26(2):395-401. PubMed ID: 26585348 [TBL] [Abstract][Full Text] [Related]
26. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid. Santra DC; Bera MK; Sukul PK; Malik S Chemistry; 2016 Feb; 22(6):2012-2019. PubMed ID: 26743445 [TBL] [Abstract][Full Text] [Related]
27. Self-assembled structures of N-alkylated bisbenzimidazolyl naphthalene in aqueous media for highly sensitive detection of picric acid. Wu YC; Luo SH; Cao L; Jiang K; Wang LY; Xie JC; Wang ZY Anal Chim Acta; 2017 Jul; 976():74-83. PubMed ID: 28576320 [TBL] [Abstract][Full Text] [Related]
28. A highly sensitive fluorescent nanoprobe for the amplified detection of formaldehyde. Qiao Y; Lu F; Zheng X Anal Methods; 2022 Nov; 14(42):4236-4244. PubMed ID: 36250494 [TBL] [Abstract][Full Text] [Related]
29. Diverse states and properties of polymer nanoparticles and gel formed by polyethyleneimine and aldehydes and analytical applications. Ling Y; Qu F; Zhou Q; Li T; Gao ZF; Lei JL; Li NB; Luo HQ Anal Chem; 2015 Sep; 87(17):8679-86. PubMed ID: 26236923 [TBL] [Abstract][Full Text] [Related]
30. Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene. Tanwar AS; Adil LR; Afroz MA; Iyer PK ACS Sens; 2018 Aug; 3(8):1451-1461. PubMed ID: 30039698 [TBL] [Abstract][Full Text] [Related]
31. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds. Guo MX; Yang L; Jiang ZW; Peng ZW; Li YF Spectrochim Acta A Mol Biomol Spectrosc; 2017 Dec; 187():43-48. PubMed ID: 28651241 [TBL] [Abstract][Full Text] [Related]
32. Adenosine-derived doped carbon dots: From an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing. Li N; Liu SG; Fan YZ; Ju YJ; Xiao N; Luo HQ; Li NB Anal Chim Acta; 2018 Jul; 1013():63-70. PubMed ID: 29501093 [TBL] [Abstract][Full Text] [Related]
33. Strongly fluorescent cysteamine-coated copper nanoclusters as a fluorescent probe for determination of picric acid. Bao Z; Zhang K; Jian J; Hu Z; Yuan K; Shao H; Peng K; Jiang Z; Zapien JA; Yan Y; Zhang C; Zhou H Mikrochim Acta; 2018 Oct; 185(11):507. PubMed ID: 30338341 [TBL] [Abstract][Full Text] [Related]
34. Tellurium Containing Long Lived Emissive Fluorophore for Selective and Visual Detection of Picric Acid through Photo-Induced Electron Transfer. Banerjee B; Ali A; Kumar S; Verma RK; Verma VK; Singh RC Chempluschem; 2024 Aug; 89(8):e202400035. PubMed ID: 38552142 [TBL] [Abstract][Full Text] [Related]
35. Ultratrace Detection of Nitroaromatics: Picric Acid Responsive Aggregation/Disaggregation of Self-Assembled p-Terphenylbenzimidazolium-Based Molecular Baskets. Sandhu S; Kumar R; Singh P; Mahajan A; Kaur M; Kumar S ACS Appl Mater Interfaces; 2015 May; 7(19):10491-500. PubMed ID: 25915852 [TBL] [Abstract][Full Text] [Related]
36. Fluorescent nucleotide-lanthanide nanoparticles for highly selective determination of picric acid. Gao R; Wang J; Wang H; Dong W; Zhu J Mikrochim Acta; 2021 Jan; 188(1):18. PubMed ID: 33404778 [TBL] [Abstract][Full Text] [Related]
37. Recognition of D-Penicillamine Using Schiff Base Centered Fluorescent Organic Nanoparticles and Application to Medicine Analysis. Mahajan PG; Kolekar GB; Patil SR J Fluoresc; 2017 May; 27(3):829-839. PubMed ID: 28091784 [TBL] [Abstract][Full Text] [Related]
38. Water-soluble polymer dots formed from polyethylenimine and glutathione as a fluorescent probe for mercury(II). Luo D; Liu SG; Li NB; Luo HQ Mikrochim Acta; 2018 May; 185(6):284. PubMed ID: 29736879 [TBL] [Abstract][Full Text] [Related]
39. Shedding Novel Photophysical Insights Toward Discriminative Detection of Three Toxic Heavy Metal Ions and a hazard class 1 nitro-explosive By Using a Simple AIEE Active Luminogen. Mondal T; Biswas S; Mane MV; Panja SS J Fluoresc; 2024 May; 34(3):1401-1425. PubMed ID: 37542589 [TBL] [Abstract][Full Text] [Related]
40. p-Pyridine BODIPY-based fluorescence probe for highly sensitive and selective detection of picric acid. Li H; Jia R; Wang Y Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117793. PubMed ID: 31757705 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]