BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27471955)

  • 1. Impact of increased mutagenesis on adaptation to high temperature in bacteriophage Qβ.
    Arribas M; Cabanillas L; Kubota K; Lázaro E
    Virology; 2016 Oct; 497():163-170. PubMed ID: 27471955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of mutations conferring 5-azacytidine resistance in bacteriophage Qβ.
    Arribas M; Cabanillas L; Lázaro E
    Virology; 2011 Sep; 417(2):343-52. PubMed ID: 21757215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in protein domains outside the catalytic site of the bacteriophage Qβ replicase reduce the mutagenic effect of 5-azacytidine.
    Cabanillas L; Sanjuán R; Lázaro E
    J Virol; 2014 Sep; 88(18):10480-7. PubMed ID: 24965463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beneficial effects of population bottlenecks in an RNA virus evolving at increased error rate.
    Cases-González C; Arribas M; Domingo E; Lázaro E
    J Mol Biol; 2008 Dec; 384(5):1120-9. PubMed ID: 18951905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution at increased error rate leads to the coexistence of multiple adaptive pathways in an RNA virus.
    Cabanillas L; Arribas M; Lázaro E
    BMC Evol Biol; 2013 Jan; 13():11. PubMed ID: 23323937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.
    Tejero H; Montero F; Nuño JC
    Curr Top Microbiol Immunol; 2016; 392():161-79. PubMed ID: 26210988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for RNA-genome recognition during bacteriophage Qβ replication.
    Gytz H; Mohr D; Seweryn P; Yoshimura Y; Kutlubaeva Z; Dolman F; Chelchessa B; Chetverin AB; Mulder FA; Brodersen DE; Knudsen CR
    Nucleic Acids Res; 2015 Dec; 43(22):10893-906. PubMed ID: 26578560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation to fluctuating temperatures in an RNA virus is driven by the most stringent selective pressure.
    Arribas M; Kubota K; Cabanillas L; Lázaro E
    PLoS One; 2014; 9(6):e100940. PubMed ID: 24963780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dissection of a viral quasispecies under mutagenic treatment: positive correlation between fitness loss and mutational load.
    Arias A; Isabel de Ávila A; Sanz-Ramos M; Agudo R; Escarmís C; Domingo E
    J Gen Virol; 2013 Apr; 94(Pt 4):817-830. PubMed ID: 23239576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viral replication modes in single-peak fitness landscapes: A dynamical systems analysis.
    Fornés J; Tomás Lázaro J; Alarcón T; Elena SF; Sardanyés J
    J Theor Biol; 2019 Jan; 460():170-183. PubMed ID: 30300648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ.
    Kashiwagi A; Sugawara R; Sano Tsushima F; Kumagai T; Yomo T
    J Virol; 2014 Oct; 88(19):11459-68. PubMed ID: 25056887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Single-Stranded RNA Bacteriophage Qβ Adapts Rapidly to High Temperatures: An Evolution Experiment.
    Hossain MT; Yokono T; Kashiwagi A
    Viruses; 2020 Jun; 12(6):. PubMed ID: 32545482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiviral Strategies Based on Lethal Mutagenesis and Error Threshold.
    Perales C; Domingo E
    Curr Top Microbiol Immunol; 2016; 392():323-39. PubMed ID: 26294225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergism of mutations in bacteriophage Qbeta RNA affecting host factor dependence of Qbeta replicase.
    Schuppli D; Georgijevic J; Weber H
    J Mol Biol; 2000 Jan; 295(2):149-54. PubMed ID: 10623514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of the bacteriophage Qbeta infection cycle.
    Tsukada K; Okazaki M; Kita H; Inokuchi Y; Urabe I; Yomo T
    Biochim Biophys Acta; 2009 Jan; 1790(1):65-70. PubMed ID: 18790012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-Population Competition during Adaptation to Increased Temperature in an RNA Bacteriophage.
    Arribas M; Lázaro E
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary Adaptation of an RNA Bacteriophage to Repeated Freezing and Thawing Cycles.
    Laguna-Castro M; Rodríguez-Moreno A; Lázaro E
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No evidence of selection for mutational robustness during lethal mutagenesis of lymphocytic choriomeningitis virus.
    Martín V; Grande-Pérez A; Domingo E
    Virology; 2008 Aug; 378(1):185-92. PubMed ID: 18572218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary Dynamics in the RNA Bacteriophage Qβ Depends on the Pattern of Change in Selective Pressures.
    Somovilla P; Manrubia S; Lázaro E
    Pathogens; 2019 Jun; 8(2):. PubMed ID: 31216651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of adaptive mutations, from thermal adaptation experiments, on the infection cycle of RNA bacteriophage Qβ.
    Kashiwagi A; Kadoya T; Kumasaka N; Kumagai T; Tsushima FS; Yomo T
    Arch Virol; 2018 Oct; 163(10):2655-2662. PubMed ID: 29869034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.