BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27472025)

  • 1. Current state and challenges for dynamic metabolic modeling.
    Vasilakou E; Machado D; Theorell A; Rocha I; Nöh K; Oldiges M; Wahl SA
    Curr Opin Microbiol; 2016 Oct; 33():97-104. PubMed ID: 27472025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data.
    Kümmel A; Panke S; Heinemann M
    Mol Syst Biol; 2006; 2():2006.0034. PubMed ID: 16788595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New experimental and theoretical tools for metabolic engineering of micro-organisms.
    Heijnen JJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approaches to the topology, stability and dynamics of metabolic networks.
    Steuer R
    Phytochemistry; 2007; 68(16-18):2139-51. PubMed ID: 17574639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic network reconstruction: advances in in silico interpretation of analytical information.
    Chen N; del Val IJ; Kyriakopoulos S; Polizzi KM; Kontoravdi C
    Curr Opin Biotechnol; 2012 Feb; 23(1):77-82. PubMed ID: 22119273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial metabolism in immediate response to nutritional perturbation with temporal and network view of metabolites.
    Yukihira D; Fujimura Y; Wariishi H; Miura D
    Mol Biosyst; 2015 Sep; 11(9):2473-82. PubMed ID: 26138404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.
    Huthmacher C; Gille C; Holzhütter HG
    J Theor Biol; 2008 Jun; 252(3):456-64. PubMed ID: 17988690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks.
    Averesch NJH; Martínez VS; Nielsen LK; Krömer JO
    ACS Synth Biol; 2018 Feb; 7(2):490-509. PubMed ID: 29237121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. k-OptForce: integrating kinetics with flux balance analysis for strain design.
    Chowdhury A; Zomorrodi AR; Maranas CD
    PLoS Comput Biol; 2014 Feb; 10(2):e1003487. PubMed ID: 24586136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.
    Tepper N; Noor E; Amador-Noguez D; Haraldsdóttir HS; Milo R; Rabinowitz J; Liebermeister W; Shlomi T
    PLoS One; 2013; 8(9):e75370. PubMed ID: 24086517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic flux distributions: genetic information, computational predictions, and experimental validation.
    Blank LM; Kuepfer L
    Appl Microbiol Biotechnol; 2010 May; 86(5):1243-55. PubMed ID: 20232063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks.
    Brochado AR; Andrejev S; Maranas CD; Patil KR
    PLoS Comput Biol; 2012; 8(11):e1002758. PubMed ID: 23133362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.
    Kim HU; Charusanti P; Lee SY; Weber T
    Nat Prod Rep; 2016 Aug; 33(8):933-41. PubMed ID: 27072921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing enzymes using metabolome data for the hybrid dynamic/static method.
    Ishii N; Nakayama Y; Tomita M
    Theor Biol Med Model; 2007 May; 4():19. PubMed ID: 17511884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path finding methods accounting for stoichiometry in metabolic networks.
    Pey J; Prada J; Beasley JE; Planes FJ
    Genome Biol; 2011; 12(5):R49. PubMed ID: 21619601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors.
    Weiner M; Tröndle J; Albermann C; Sprenger GA; Weuster-Botz D
    Adv Biochem Eng Biotechnol; 2016; 152():91-136. PubMed ID: 25981857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics.
    Bordbar A; Yurkovich JT; Paglia G; Rolfsson O; Sigurjónsson ÓE; Palsson BO
    Sci Rep; 2017 Apr; 7():46249. PubMed ID: 28387366
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.