These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27472025)

  • 21. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses.
    Rennenberg H; Herschbach C
    J Exp Bot; 2014 Nov; 65(20):5711-24. PubMed ID: 25124317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capturing the essence of a metabolic network: a flux balance analysis approach.
    Murabito E; Simeonidis E; Smallbone K; Swinton J
    J Theor Biol; 2009 Oct; 260(3):445-52. PubMed ID: 19540851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Filling kinetic gaps: dynamic modeling of metabolism where detailed kinetic information is lacking.
    Resendis-Antonio O
    PLoS One; 2009; 4(3):e4967. PubMed ID: 19305506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae.
    Boghigian BA; Lee K; Pfeifer BA
    J Theor Biol; 2010 Jan; 262(2):197-207. PubMed ID: 19833139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic modelling of plant metabolic pathways.
    Rohwer JM
    J Exp Bot; 2012 Mar; 63(6):2275-92. PubMed ID: 22419742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The activity reaction core and plasticity of metabolic networks.
    Almaas E; Oltvai ZN; Barabási AL
    PLoS Comput Biol; 2005 Dec; 1(7):e68. PubMed ID: 16362071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved metabolite profile smoothing for flux estimation.
    Dromms RA; Styczynski MP
    Mol Biosyst; 2015 Sep; 11(9):2394-405. PubMed ID: 26172986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments.
    Nöh K; Grönke K; Luo B; Takors R; Oldiges M; Wiechert W
    J Biotechnol; 2007 Apr; 129(2):249-67. PubMed ID: 17207877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome scale models of yeast: towards standardized evaluation and consistent omic integration.
    Sánchez BJ; Nielsen J
    Integr Biol (Camb); 2015 Aug; 7(8):846-58. PubMed ID: 26079294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass conservation and inference of metabolic networks from high-throughput mass spectrometry data.
    Bandaru P; Bansal M; Nemenman I
    J Comput Biol; 2011 Feb; 18(2):147-54. PubMed ID: 21314454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parameter identification of in vivo kinetic models: limitations and challenges.
    Heijnen JJ; Verheijen PJ
    Biotechnol J; 2013 Jul; 8(7):768-75. PubMed ID: 23813763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The common message of constraint-based optimization approaches: overflow metabolism is caused by two growth-limiting constraints.
    de Groot DH; Lischke J; Muolo R; Planqué R; Bruggeman FJ; Teusink B
    Cell Mol Life Sci; 2020 Feb; 77(3):441-453. PubMed ID: 31758233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The number of catalytic elements is crucial for the emergence of metabolic cores.
    De la Fuente IM; Vadillo F; Pérez-Pinilla MB; Vera-López A; Veguillas J
    PLoS One; 2009 Oct; 4(10):e7510. PubMed ID: 19888419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systems biology of microbial metabolism.
    Heinemann M; Sauer U
    Curr Opin Microbiol; 2010 Jun; 13(3):337-43. PubMed ID: 20219420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo dynamics of glycolysis in Escherichia coli shows need for growth-rate dependent metabolome analysis.
    Schaub J; Reuss M
    Biotechnol Prog; 2008; 24(6):1402-7. PubMed ID: 19194955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolomics integrated elementary flux mode analysis in large metabolic networks.
    Gerstl MP; Ruckerbauer DE; Mattanovich D; Jungreuthmayer C; Zanghellini J
    Sci Rep; 2015 Mar; 5():8930. PubMed ID: 25754258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Workflow for Studying Specialized Metabolism in Nonmodel Eukaryotic Organisms.
    Torrens-Spence MP; Fallon TR; Weng JK
    Methods Enzymol; 2016; 576():69-97. PubMed ID: 27480683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of control mechanisms for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants.
    Shirai T; Matsuda F; Okamoto M; Kondo A
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3569-77. PubMed ID: 23224404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.