BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27472077)

  • 1. Evidence of Dual Mechanisms of Glutathione Uptake in the Rodent Lens: A Novel Role for Vitreous Humor in Lens Glutathione Homeostasis.
    Whitson JA; Sell DR; Goodman MC; Monnier VM; Fan X
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(8):3914-25. PubMed ID: 27472077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling cortical cataractogenesis XXIV: uptake by the lens of glutathione injected into the rat.
    Stewart-DeHaan PJ; Dzialoszynski T; Trevithick JR
    Mol Vis; 1999 Dec; 5():37. PubMed ID: 10617774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of the glutathione-deficient LEGSKO mouse lens reveals activation of EMT signaling, loss of lens specific markers, and changes in stress response proteins.
    Whitson JA; Wilmarth PA; Klimek J; Monnier VM; David L; Fan X
    Free Radic Biol Med; 2017 Dec; 113():84-96. PubMed ID: 28951044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lens glutathione homeostasis: Discrepancies and gaps in knowledge standing in the way of novel therapeutic approaches.
    Fan X; Monnier VM; Whitson J
    Exp Eye Res; 2017 Mar; 156():103-111. PubMed ID: 27373973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-to-lens transport of reduced glutathione in an in situ perfused guinea-pig eye.
    Zlokovic BV; Mackic JB; McComb JG; Kaplowitz N; Weiss MH; Kannan R
    Exp Eye Res; 1994 Oct; 59(4):487-96. PubMed ID: 7859824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome of the GSH-Depleted Lens Reveals Changes in Detoxification and EMT Signaling Genes, Transport Systems, and Lipid Homeostasis.
    Whitson JA; Zhang X; Medvedovic M; Chen J; Wei Z; Monnier VM; Fan X
    Invest Ophthalmol Vis Sci; 2017 May; 58(5):2666-2684. PubMed ID: 28525556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of Glutathione Export from Human Donor Lenses.
    Li B; Kim JY; Martis RM; Donaldson PJ; Lim JC
    Transl Vis Sci Technol; 2020 Jul; 9(8):37. PubMed ID: 32855883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative responses induced by pharmacologic vitreolysis and/or long-term hyperoxia treatment in rat lenses.
    Li Q; Yan H; Ding TB; Han J; Shui YB; Beebe DC
    Curr Eye Res; 2013 Jun; 38(6):639-48. PubMed ID: 23534693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low de novo glutathione synthesis from circulating sulfur amino acids in the lens epithelium.
    Mackic JB; Kannan R; Kaplowitz N; Zlokovic BV
    Exp Eye Res; 1997 Apr; 64(4):615-26. PubMed ID: 9227280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of GSH in alphaA-expressing human lens epithelial cell lines and in alphaA knockout mouse lenses.
    Kannan R; Ouyang B; Wawrousek E; Kaplowitz N; Andley UP
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):409-16. PubMed ID: 11157875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic regulation of GSH synthesis and uptake pathways in the rat lens epithelium.
    Li B; Li L; Donaldson PJ; Lim JC
    Exp Eye Res; 2010 Feb; 90(2):300-7. PubMed ID: 19941852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of vitamin E on glutathione content in red blood cells, aqueous humor and lens of humans and other species.
    Costagliola C; Iuliano G; Menzione M; Rinaldi E; Vito P; Auricchio G
    Exp Eye Res; 1986 Dec; 43(6):905-14. PubMed ID: 3817031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.
    Zhang J; Yan H; Lou MF
    Exp Eye Res; 2017 Aug; 161():36-42. PubMed ID: 28579033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterisation of glutathione export from the rat lens.
    Umapathy A; Li B; Donaldson PJ; Lim JC
    Exp Eye Res; 2018 Jan; 166():151-159. PubMed ID: 29032155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular identification and characterisation of the glycine transporter (GLYT1) and the glutamine/glutamate transporter (ASCT2) in the rat lens.
    Lim J; Lorentzen KA; Kistler J; Donaldson PJ
    Exp Eye Res; 2006 Aug; 83(2):447-55. PubMed ID: 16635486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging.
    Nye-Wood MG; Spraggins JM; Caprioli RM; Schey KL; Donaldson PJ; Grey AC
    Exp Eye Res; 2017 Jan; 154():70-78. PubMed ID: 27838309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract.
    Sweeney MH; Truscott RJ
    Exp Eye Res; 1998 Nov; 67(5):587-95. PubMed ID: 9878221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The LEGSKO mouse: a mouse model of age-related nuclear cataract based on genetic suppression of lens glutathione synthesis.
    Fan X; Liu X; Hao S; Wang B; Robinson ML; Monnier VM
    PLoS One; 2012; 7(11):e50832. PubMed ID: 23226398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin C metabolomic mapping in the lens with 6-deoxy-6-fluoro-ascorbic acid and high-resolution 19F-NMR spectroscopy.
    Satake M; Dmochowska B; Nishikawa Y; Madaj J; Xue J; Guo Z; Reddy DV; Rinaldi PL; Monnier VM
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2047-58. PubMed ID: 12714643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is it possible to maintain a normal glutathione level in lenses in vitro?
    Hockwin O; Korte I; Noll E; Heiden M; Konopka R; Hagenah J; Hurtado R
    Graefes Arch Clin Exp Ophthalmol; 1985; 222(3):142-6. PubMed ID: 3979834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.