These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27472101)

  • 1. Reparameterization of an Accurate, Few-Parameter Implicit Solvation Model for Quantum Chemistry: Composite Method for Implicit Representation of Solvent, CMIRS v. 1.1.
    You ZQ; Herbert JM
    J Chem Theory Comput; 2016 Sep; 12(9):4338-46. PubMed ID: 27472101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite method for implicit representation of solvent in dimethyl sulfoxide and acetonitrile.
    Pomogaeva A; Chipman DM
    J Phys Chem A; 2015 May; 119(21):5173-80. PubMed ID: 25456158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration Energy from a Composite Method for Implicit Representation of Solvent.
    Pomogaeva A; Chipman DM
    J Chem Theory Comput; 2014 Jan; 10(1):211-9. PubMed ID: 26579904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum mechanical continuum solvation models for ionic liquids.
    Bernales VS; Marenich AV; Contreras R; Cramer CJ; Truhlar DG
    J Phys Chem B; 2012 Aug; 116(30):9122-9. PubMed ID: 22734466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Performance of the SMD Solvation Model: Bondi Radii Improve Predicted Aqueous Solvation Free Energies of Ions and p
    Mirzaei S; Ivanov MV; Timerghazin QK
    J Phys Chem A; 2019 Nov; 123(44):9498-9504. PubMed ID: 31318553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New implicit solvation models for dispersion and exchange energies.
    Pomogaeva A; Chipman DM
    J Phys Chem A; 2013 Jul; 117(28):5812-20. PubMed ID: 23799302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CMIRS Solvation Model for Methanol: Parametrization, Testing, and Comparison with SMD, SM8, and COSMO-RS.
    Silva NM; Deglmann P; Pliego JR
    J Phys Chem B; 2016 Dec; 120(49):12660-12668. PubMed ID: 27973833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models.
    Bryantsev VS; Diallo MS; Goddard WA
    J Phys Chem B; 2008 Aug; 112(32):9709-19. PubMed ID: 18646800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation Thermodynamics of Solutes in Water and Ionic Liquids Using the Multiscale Solvation-Layer Interface Condition Continuum Model.
    Rahimi AM; Jamali S; Bardhan JP; Lustig SR
    J Chem Theory Comput; 2022 Sep; 18(9):5539-5558. PubMed ID: 36001344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models.
    Sundararaman R; Gunceler D; Arias TA
    J Chem Phys; 2014 Oct; 141(13):134105. PubMed ID: 25296782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile.
    Zanith CC; Pliego JR
    J Comput Aided Mol Des; 2015 Mar; 29(3):217-24. PubMed ID: 25398641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Electrochemistry of Ruthenium Anticancer Agents. Unprecedented Benchmarking of Implicit Solvation Methods.
    Chiorescu I; Deubel DV; Arion VB; Keppler BK
    J Chem Theory Comput; 2008 Mar; 4(3):499-506. PubMed ID: 26620790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model.
    Sundararaman R; Goddard WA
    J Chem Phys; 2015 Feb; 142(6):064107. PubMed ID: 25681887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions.
    Duignan TT; Parsons DF; Ninham BW
    J Phys Chem B; 2013 Aug; 117(32):9421-9. PubMed ID: 23837915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized parameters for continuum solvation calculations with carbohydrates.
    Green DF
    J Phys Chem B; 2008 Apr; 112(16):5238-49. PubMed ID: 18386862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving solvation energy predictions using the SMD solvation method and semiempirical electronic structure methods.
    Kromann JC; Steinmann C; Jensen JH
    J Chem Phys; 2018 Sep; 149(10):104102. PubMed ID: 30219007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GB/SA water model for the Merck molecular force field (MMFF).
    Cheng A; Best SA; Merz KM; Reynolds CH
    J Mol Graph Model; 2000 Jun; 18(3):273-82. PubMed ID: 11021543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.