These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 27472158)
1. DETERMINANTS OF THE INTENTION TO USE TELEMEDICINE: EVIDENCE FROM PRIMARY CARE PHYSICIANS. Saigi-Rubió F; Jiménez-Zarco A; Torrent-Sellens J Int J Technol Assess Health Care; 2016 Jan; 32(1-2):29-36. PubMed ID: 27472158 [TBL] [Abstract][Full Text] [Related]
2. Predictive factors of telemedicine service acceptance and behavioral intention of physicians. Rho MJ; Choi IY; Lee J Int J Med Inform; 2014 Aug; 83(8):559-71. PubMed ID: 24961820 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of teledermatology adoption by health-care professionals using a modified Technology Acceptance Model. Orruño E; Gagnon MP; Asua J; Ben Abdeljelil A J Telemed Telecare; 2011; 17(6):303-7. PubMed ID: 21844171 [TBL] [Abstract][Full Text] [Related]
4. The technology acceptance model: predicting nurses' intention to use telemedicine technology (eICU). Kowitlawakul Y Comput Inform Nurs; 2011 Jul; 29(7):411-8. PubMed ID: 20975536 [TBL] [Abstract][Full Text] [Related]
5. Determinants of physicians' technology acceptance for e-health in ambulatory care. Dünnebeil S; Sunyaev A; Blohm I; Leimeister JM; Krcmar H Int J Med Inform; 2012 Nov; 81(11):746-60. PubMed ID: 22397989 [TBL] [Abstract][Full Text] [Related]
6. Drivers of telemedicine use: comparative evidence from samples of Spanish, Colombian and Bolivian physicians. Saigí-Rubió F; Torrent-Sellens J; Jiménez-Zarco A Implement Sci; 2014 Oct; 9():128. PubMed ID: 25293651 [TBL] [Abstract][Full Text] [Related]
7. An adaptation of the theory of interpersonal behaviour to the study of telemedicine adoption by physicians. Gagnon MP; Godin G; Gagné C; Fortin JP; Lamothe L; Reinharz D; Cloutier A Int J Med Inform; 2003 Sep; 71(2-3):103-15. PubMed ID: 14519403 [TBL] [Abstract][Full Text] [Related]
8. Analyzing older users' home telehealth services acceptance behavior-applying an Extended UTAUT model. Cimperman M; Makovec Brenčič M; Trkman P Int J Med Inform; 2016 Jun; 90():22-31. PubMed ID: 27103194 [TBL] [Abstract][Full Text] [Related]
9. Adoption of health information technologies by physicians for clinical practice: The Andalusian case. Villalba-Mora E; Casas I; Lupiañez-Villanueva F; Maghiros I Int J Med Inform; 2015 Jul; 84(7):477-85. PubMed ID: 25823578 [TBL] [Abstract][Full Text] [Related]
10. [Factors that determine the intention to use telemedicine in a healthcare organisation]. Pereyra-Rodriguez JJ; Jiménez-Zarco AI; Saigí-Rubió F J Healthc Qual Res; 2018; 33(6):319-328. PubMed ID: 30482649 [TBL] [Abstract][Full Text] [Related]
11. Understanding the discriminant factors that influence the adoption and use of clinical communities of practice: the ECOPIH case. Lacasta Tintorer D; Flayeh Beneyto S; Manresa JM; Torán-Monserrat P; Jiménez-Zarco A; Torrent-Sellens J; Saigí-Rubió F BMC Health Serv Res; 2015 Sep; 15():373. PubMed ID: 26358037 [TBL] [Abstract][Full Text] [Related]
12. The influence of telemedicine experience on physicians' perceptions regarding adoption. Kuo KM; Talley PC; Lee CM; Yen YC Telemed J E Health; 2015 May; 21(5):388-94. PubMed ID: 25764024 [TBL] [Abstract][Full Text] [Related]
13. Towards reinforcing telemedicine adoption amongst clinicians in Nigeria. Adenuga KI; Iahad NA; Miskon S Int J Med Inform; 2017 Aug; 104():84-96. PubMed ID: 28599820 [TBL] [Abstract][Full Text] [Related]
14. Technical attributes, health attribute, consumer attributes and their roles in adoption intention of healthcare wearable technology. Zhang M; Luo M; Nie R; Zhang Y Int J Med Inform; 2017 Dec; 108():97-109. PubMed ID: 29132639 [TBL] [Abstract][Full Text] [Related]
15. Determinants of the Intention of Senegal's Physicians to Use Telemedicine in Their Professional Activities. Ly BA; Kristjansson E; Labonté R; Bourgeault IL Telemed J E Health; 2018 Nov; 24(11):897-898. PubMed ID: 29470109 [TBL] [Abstract][Full Text] [Related]
16. Moderating factors influencing adoption of a mobile chronic disease management system in China. Zhu Z; Liu Y; Che X; Chen X Inform Health Soc Care; 2018 Jan; 43(1):22-41. PubMed ID: 28068149 [TBL] [Abstract][Full Text] [Related]
17. Investigating Physicians' Adoption of Telemedicine in Romania Using Technology Acceptance Model (TAM). Bîlbîie A; Puiu AI; Mihăilă V; Burcea M Healthcare (Basel); 2024 Aug; 12(15):. PubMed ID: 39120234 [TBL] [Abstract][Full Text] [Related]
18. Rural Minnesota family physicians' attitudes toward telemedicine. Kane J; Morken J; Boulger J; Crouse B; Bergeron D Minn Med; 1995 Mar; 78(3):19-23. PubMed ID: 7739473 [TBL] [Abstract][Full Text] [Related]
19. User acceptance of mobile health services from users' perspectives: The role of self-efficacy and response-efficacy in technology acceptance. Zhang X; Han X; Dang Y; Meng F; Guo X; Lin J Inform Health Soc Care; 2017 Mar; 42(2):194-206. PubMed ID: 27564428 [TBL] [Abstract][Full Text] [Related]
20. Physician acceptance of telemedicine technology: an empirical investigation. Hu PJ; Chau PY Top Health Inf Manage; 1999 May; 19(4):20-35. PubMed ID: 10387653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]