These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2747230)

  • 1. The Fahraeus effect in sheet flows with a gap thickness of 4 to 36 microns.
    Deng LH; Wu YP; Wang GR; Yang RF; Lee JS
    J Biomech Eng; 1989 Feb; 111(1):32-6. PubMed ID: 2747230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hematocrit fluctuations within capillary tubes and estimation of Fåhraeus effect.
    Secomb TW; Pries AR; Gaehtgens P
    Int J Microcirc Clin Exp; 1987; 5(4):335-45. PubMed ID: 3557819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow behavior of neonatal and adult erythrocytes in narrow capillaries.
    Stadler A; Linderkamp O
    Microvasc Res; 1989 May; 37(3):267-79. PubMed ID: 2733599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inversion of Fahraeus effect and effect of mainstream flow on capillary hematocrit.
    Yen RT; Fung YC
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Apr; 42(4):578-86. PubMed ID: 863819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model.
    Chebbi R
    J Biol Phys; 2018 Dec; 44(4):591-603. PubMed ID: 30219980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microhemodynamics of blood flow in narrow glass capillaries of 9 to 20 micrometers; the Fahraeus effect.
    Ohshima N; Sato M; Oda N
    Biorheology; 1988; 25(1-2):339-48. PubMed ID: 3196831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Role of erythrocyte deformability in erythrocyte transit time and bioavailability of O2].
    Thao Chan M; Catry E; George C
    J Mal Vasc; 1985; 10(1):43-6. PubMed ID: 3981074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for red blood cell motion in glycocalyx-lined capillaries.
    Secomb TW; Hsu R; Pries AR
    Am J Physiol; 1998 Mar; 274(3):H1016-22. PubMed ID: 9530216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemorheological factors of oxygen transfer in capillary tissue unit.
    Niimi H; Sugihara M; Yamakawa T
    Biorheology; 1983; 20(5):603-14. PubMed ID: 6677280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhraeus effect) in an artificial microvascular network.
    Reinhart WH; Piety NZ; Shevkoplyas SS
    Microcirculation; 2017 Nov; 24(8):. PubMed ID: 28801994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cell motion and hematocrit distribution in a deforming capillary.
    Friend M; Lee JS
    J Biomech Eng; 1990 Nov; 112(4):451-6. PubMed ID: 2273873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fahraeus effect and cell screening during tub flow of human blood. I. Effect of variation of flow rate.
    Gaehtgens P; Albrecht KH; Kreutz F
    Biorheology; 1978; 15(3-4):147-54. PubMed ID: 737317
    [No Abstract]   [Full Text] [Related]  

  • 13. Viscosity reduction of red blood cells from preterm and full-term neonates and adults in narrow tubes (Fahraeus-Lindqvist effect).
    Zilow EP; Linderkamp O
    Pediatr Res; 1989 Jun; 25(6):595-9. PubMed ID: 2740150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of velocity of distribution on red cell distribution in capillary blood vessels.
    Yen RT; Fung YC
    Am J Physiol; 1978 Aug; 235(2):H251-7. PubMed ID: 686194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB; Meiselman HJ
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of oxygen transport rates in blood flowing in large capillaries.
    Nair PK; Hellums JD; Olson JS
    Microvasc Res; 1989 Nov; 38(3):269-85. PubMed ID: 2607997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes.
    Gaehtgens P; Dührssen C; Albrecht KH
    Blood Cells; 1980; 6(4):799-817. PubMed ID: 7470632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation of red blood cell flow in small tubes by white blood cells.
    Thompson TN; La Celle PL; Cokelet GR
    Pflugers Arch; 1989 Feb; 413(4):372-7. PubMed ID: 2928089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood viscosity in tube flow: dependence on diameter and hematocrit.
    Pries AR; Neuhaus D; Gaehtgens P
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1770-8. PubMed ID: 1481902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fahraeus effect and cell screening during tube flow of human blood. II. Effect of dextran-induced cell aggregation.
    Gaehtgens P; Kreutz F; Albrecht KH
    Biorheology; 1978; 15(3-4):155-61. PubMed ID: 737318
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.