BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27472301)

  • 1. Modular Attachment of Appended Boron Lewis Acids to a Ruthenium Pincer Catalyst: Metal-Ligand Cooperativity Enables Selective Alkyne Hydrogenation.
    Tseng KN; Kampf JW; Szymczak NK
    J Am Chem Soc; 2016 Aug; 138(33):10378-81. PubMed ID: 27472301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction to "Modular Attachment of Appended Boron Lewis Acids to a Ruthenium Pincer Catalyst: Metal-Ligand Cooperativity Enables Selective Alkyne Hydrogenation".
    Tseng KT; Kampf JW; Szymczak NK
    J Am Chem Soc; 2017 Dec; 139(49):18122. PubMed ID: 29172476
    [No Abstract]   [Full Text] [Related]  

  • 3. A High-Valent Ru-PCP Pincer Catalyst for Hydrogenation of Carbonyl and Carboxyl Compounds under Molecular Hydrogen.
    Mujahed S; Hey-Hawkins E; Gelman D
    Chemistry; 2022 Jul; 28(38):e202201098. PubMed ID: 35638170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unexpected Direct Hydride Transfer Mechanism for the Hydrogenation of Ethyl Acetate to Ethanol Catalyzed by SNS Pincer Ruthenium Complexes.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Feb; 22(6):1950-1957. PubMed ID: 26751717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhenium hydride/boron Lewis acid cocatalysis of alkene hydrogenations: activities comparable to those of precious metal systems.
    Jiang Y; Hess J; Fox T; Berke H
    J Am Chem Soc; 2010 Dec; 132(51):18233-47. PubMed ID: 21141863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic hydrogenation with frustrated Lewis pairs: selectivity achieved by size-exclusion design of Lewis acids.
    Eros G; Nagy K; Mehdi H; Pápai I; Nagy P; Király P; Tárkányi G; Soós T
    Chemistry; 2012 Jan; 18(2):574-85. PubMed ID: 22161804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective transfer hydrogenation and hydrogenation of ketones using a defined monofunctional (P^N(Bn)^N(Bn)^P)-Ru(II) complex.
    Hsu SF; Plietker B
    Chemistry; 2014 Apr; 20(15):4242-5. PubMed ID: 24623666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.
    Hernández-Juárez M; López-Serrano J; Lara P; Morales-Cerón JP; Vaquero M; Álvarez E; Salazar V; Suárez A
    Chemistry; 2015 May; 21(20):7540-55. PubMed ID: 25820229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semihydrogenation of Alkynes Catalyzed by a Pyridone Borane Complex: Frustrated Lewis Pair Reactivity and Boron-Ligand Cooperation in Concert.
    Wech F; Hasenbeck M; Gellrich U
    Chemistry; 2020 Oct; 26(59):13445-13450. PubMed ID: 32242988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifunctional ruthenium(II) hydride complexes with pendant strong Lewis acid moieties: structure, dynamics, and cooperativity.
    Ostapowicz TG; Merkens C; Hölscher M; Klankermayer J; Leitner W
    J Am Chem Soc; 2013 Feb; 135(6):2104-7. PubMed ID: 23360380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.
    Panagiotopoulou P; Martin N; Vlachos DG
    ChemSusChem; 2015 Jun; 8(12):2046-54. PubMed ID: 26013846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments.
    Paul B; Chakrabarti K; Kundu S
    Dalton Trans; 2016 Jul; 45(27):11162-71. PubMed ID: 27328031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E-selective Semi-hydrogenation of Alkynes under Mild Conditions by a Diruthenium Hydride Complex.
    van Beek CB; Killian L; Lutz M; Weingarth M; Asundi AS; Sarangi R; Klein Gebbink RJM; Broere DLJ
    Chemistry; 2022 Dec; 28(69):e202202527. PubMed ID: 35979748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic dehydrogenative borylation of terminal alkynes by a SiNN pincer complex of iridium.
    Lee CI; Zhou J; Ozerov OV
    J Am Chem Soc; 2013 Mar; 135(9):3560-6. PubMed ID: 23374079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT Study of Acceptorless Alcohol Dehydrogenation Mediated by Ruthenium Pincer Complexes: Ligand Tautomerization Governing Metal Ligand Cooperation.
    Hou C; Zhang Z; Zhao C; Ke Z
    Inorg Chem; 2016 Jul; 55(13):6539-51. PubMed ID: 27322755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diruthenium(ii)-NNN pincer complex catalysts for transfer hydrogenation of ketones.
    Chai H; Wang Q; Liu T; Yu Z
    Dalton Trans; 2016 Nov; 45(44):17843-17849. PubMed ID: 27774562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.
    Li Y; Topf C; Cui X; Junge K; Beller M
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5196-200. PubMed ID: 25728921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bis(bipyridine) ruthenium(ii) bis(phosphido) metalloligand: synthesis of heterometallic complexes and application to catalytic (E)-selective alkyne semi-hydrogenation.
    Takemoto S; Kitamura M; Saruwatari S; Isono A; Takada Y; Nishimori R; Tsujiwaki M; Sakaue N; Matsuzaka H
    Dalton Trans; 2019 Jan; 48(4):1161-1165. PubMed ID: 30543236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New benzo[h]quinoline-based ligands and their pincer Ru and Os complexes for efficient catalytic transfer hydrogenation of carbonyl compounds.
    Baratta W; Ballico M; Baldino S; Chelucci G; Herdtweck E; Siega K; Magnolia S; Rigo P
    Chemistry; 2008; 14(30):9148-60. PubMed ID: 18803204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.